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Abstract

Programmable logic controllers (PLCs) and other field devices are important components of many
weapons platforms, including vehicles, ships, radar systems, etc. Many have significant cyber
vulnerabilities that lead to unacceptable risk. Furthermore, common procedures used during Oper-
ational Test and Evaluation (OT&E) may unexpectedly lead to unsafe or severe impacts for the field
devices or the underlying physical process. This document describes an assessment methodology
that addresses vulnerabilities, mitigations, and safe OT&E.
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Executive Summary

Industrial control system (ICS) field devices like programmable logic controllers (PLCs) play a
critical role in the safe and reliable operation of Department of Defense (DOD) platforms and
weapon systems operations. Unfortunately, these sorts of devices are often rife with cyber security
vulnerabilities that can lead to significant risks for mission performance, or even unsafe conditions
during routine Operational Test and Evaluation (OT&E). The cyber security issues faced by ICS
differ from typical information technology (IT), and this requires a different and more specific
approach to assess, test, and mitigate ICS vulnerabilities.

In a typical IT system, data confidentiality and integrity are the primary concerns. In an ICS,
mission operations, safety, public health, and avoiding equipment damage are the primary con-
cerns. ICS devices directly control time critical processes and have little margin for delay. Outages
or interruptions (even something as simple as a reboot) might not be acceptable, and if unplanned
can result in significant risk to mission. Unlike IT system updates or patches, which can be done
using automated server-based tools and are widely applicable, ICS updates are specific to the
equipment vendor.

OT&E on ICS field devices (on deployed platforms, or in high value test rigs) is often a neces-
sary requirement, but this causes significant concern within the DOD ICS community. The concern
is that implementing routine cyber security measures and testing on active ICS components and
systems may damage the ICS or even underlying physical systems. Of particular concern are ICS
field devices, which encompasses the specialized hardware that covers the boundary between the
cyber and physical domains. Examples of field devices include PLCs, electric power relays, remote
terminal units (RTUs), and other embedded devices.

The goals of the Field Device Assessment Methodology (FDAM) are to research and rank field
device vulnerabilities to be tested, summarize associated mitigations, and determine cyber test
concerns by summarizing potential OT&E test damage/safety issues. The FDAM primarily sup-
ports the cooperative assessment stage of OT&E, although the results can also support adversarial
assessments.

This document provides guidance on tools and procedures that have been developed by Sandia
National Laboratories (SNL) that are used to implement the FDAM approach, including an assess-
ment framework, quantitative risk calculation, and ranked access/procedure pairs (APPs); these are
described in Chapters 2 through 4. The FDAM process itself is presented in Chapters 5 through
7 – from initial research and discovery, to standalone lab testing, through to compiling the final
report.

5



As cyber security testing is inherently complex and detail-oriented, personnel executing the
FDAM will generally differing knowledge and experience, and this is difficult to fully document
or simplify into a step by step process. Different testing situations will influence the testing process
and its execution; therefore, it is not necessary to follow every step in the document as laid out.

The FDAM is intended to support operational test agencies (OTAs), cyber protection teams
(CPTs), and other organizations within DOD that support OT&E on weapons platforms and sys-
tems, but it can also be applied to ICS used within DOD installations and other bases, particularly
for infrastructure support. The Director, Operational Test and Evaluation (DOT&E) FDAM is ap-
plicable for mission platforms, which are heavily reliant on ICS, including naval shipboard systems
(electrical plant management, machinery control, aircraft launch/recovery, radar, fire control, and
others), advanced ground vehicle management, and aircraft/avionics. The FDAM also supports
a range of DOD assessment requirements [1, 2] and the approach is suitable to varying classifi-
cation levels, as application details and close-held government information can be included when
desirable (and useful).
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Chapter 1

Introduction

This document provides an overview of the Field Device Assessment Methodology (FDAM). The
FDAM approach encapsulates the experience that has been developed over many years by ana-
lysts at Sandia National Laboratories (SNL) to provide a safe, economical, and efficient approach
that can be used to analyze and test potential mitigations to industrial control system (ICS) cyber
security vulnerabilities, both in laboratory testing and later in operational settings.

Over the last 20 years there has been increasing recognition of cyber vulnerabilities in ICS,
starting with concerns relating to United States (US) critical infrastructure. Initially, ICS vendors
developed highly specialized technology that had a severely constrained operating envelope (very
low bitrate networks, analog signaling, and minimal software). However, the ICS industry has
increasingly adopted conventional information technology (IT) capabilities and approaches; for
example, ICS control center software is installed on conventional (often Windows-based) comput-
ers, and the ubiquitous Transmission Control Protocol/Internet Protocol (TCP/IP) protocol stack
now supports a lot of ICS networking. The adoption of IT technologies for increased ICS ca-
pabilities has led to security problems since ICS and IT systems are designed and implemented
differently. Technologies borrowed from IT systems sometimes include their own vulnerabilities;
in an IT environment, regular patching is expected and provides mitigation, but ICS owners are
often reluctant to change a fielded system and therefore rarely apply patches. This leads to many
ICS having known vulnerabilities that are not fixed once they become known, which stresses the
importance of operational testing for systems or platforms that utilize ICS.

A second challenge is the lack of a strong cyber focus on the part of the ICS vendor and
integrator communities. Since operational availability is the key motivating factor, decisions favor
reliability over security. For example, in the design stage, hardcoded vendor backdoor passwords
may facilitate troubleshooting (although awareness of this as a problem is improving) and ICS
software packages run with highest privileges to avoid any potential problems caused by incorrect
permissions. Some ICS networking protocols are extraordinarily permissive, up to allowing direct
memory access to facilitate simple, reliable control and troubleshooting. Moreover, ICS networks
rarely include network defense-in-depth, because this can introduce additional communication
delays and add more potential points of failure. Furthermore, ICS component designs often assume
a rigidly bounded set of operational conditions that are expected for any deployment. As a result,
implementations of key services on ICS devices may not support reasonable error checking and
capture. Unexpected IT network traffic (like port/device scans, broadcast traffic, or malformed
packets) could lead to interruptions or crashes. Potential device fragility limits the techniques
available to monitor and secure ICS.
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According to an Office of the Secretary of Defense (OSD) memorandum regarding “Procedures
for Operational Test and Evaluation of Cybersecurity in Acquisition Programs,” operational test
agencies (OTAs) will “include cyber threats... with the same rigor as other threats” [3]. The
purpose of cyber security operational test and evaluation is to evaluate the ability of a unit equipped
with a system to support assigned missions in the expected environment. The “system” in this
case is considered to encompass hardware, software, user operators, etc. This memorandum also
specifies the procedures to be used for testing oversight systems. The purpose of this document
is to introduce a FDAM that parallels (with some differences due to the focus on ICS hardware
and not the entire system) the procedures suggested in the memorandum. The FDAM approach
is not intended to cover the entire oversight system as referenced in the memorandum; rather, it
explains the procedures necessary to evaluate the ICS hardware devices. This focused approach on
the hardware subset of the system is warranted because ICS field devices face very different issues
than IT systems, and the risks associated with ICS cyber vulnerabilities can be significant.

Due to these issues, there is significant concern within the Department of Defense (DOD) ICS
community that routine cyber security measures that actively engage components and systems
may prove damaging to the ICS or even underlying physical systems when testing is performed on
operational systems or high-value test rigs. The effects that are of concern include:

• Unexpected or unpredictable physical system behavior

• Damage to physical system components

• Denial of service (DOS) for local automated or manual control

• DOS to supervisory control

• Unrecoverable (or nearly so) faults for field devices

The FDAM has been developed to summarize vulnerabilities, prioritize risk, evaluate miti-
gation measures, and develop measures for safe Operational Test and Evaluation (OT&E). The
FDAM manages the above effects of concern by developing insight and limitations for field de-
vice cyber security issues in a lab setting before performing tests or implementing cyber security
mitigations on operational devices.

16



1.1 Overview of the FDAM

A high level overview of the FDAM approach is listed below, with associated chapter numbers
where applicable:

• Literature review and device physical examination (Chapter 5)

• Verification/characterization (V/C) testing (Chapter 6)

• Exploration testing (Chapter 6)

• FDAM summary (Chapter 7)

– Conclusions

– Recommendations

The FDAM is a process-oriented encapsulation of experience from decades of work by analysts
at SNL. The methodology should provide a safe, economical, and efficient approach to analyze
and test potential mitigations to ICS field device vulnerabilities, both in laboratory testing and
operational settings.

It should be noted that cyber security is inherently complex and detail-oriented. The people
that perform testing and analysis often have a wealth of knowledge and experience that in some
cases cannot be documented or simplified into a step-by-step process. The FDAM tries to be as
thorough as possible, but it should be noted that in every testing situation, the experience and
knowledge of the testers may influence part or all of the process. For example, a tester that is
intimately familiar with supervisory control and data acquisition (SCADA) systems and has had
years of experience in the ICS management field might choose to do literature review and vulner-
ability scoring concurrently with lab testing. A person with limited experience might take a more
conservative, methodical approach and follow the procedures presented here to the letter. The goal
of the approach is to help testers optimize assessment scoping in order to ensure efficiency, safety,
and highest return on testing approaches.

Several conceptual frameworks and tools have been developed that are essential to understand-
ing the FDAM approach. These are described prior to the actual procedures in order to to provide
a necessary foundation and ground subsequent discussions. These tools, described in Chapters 2-4
include:

• Cyber risk framework

• Prioritized access/procedure pairs

• Vulnerability risk calculation

17



The FDAM activities are organized according to a cyber risk framework, comprised of five
categories (Chapter 2). Each of these five category consists of several components, which are used
to prioritize the cyber analysis and testing:

• Goals – what is the adversary trying to achieve

• Procedures – what the adversary is doing during cyber attack

• Access – the avenue to the device environment

• Vulnerabilities - includes both device and system vulnerabilities

• Mitigations - cyber and physical, for defend/detect/manage

A key concept of the FDAM approach is the introduction of prioritized APPs developed to
ensure optimal testing scenarios are chosen (refer to Chapter 3). These APPs, combined with
the risk ranking calculation, allow the tester to optimally select the vulnerabilities to be tested by
narrowing down the scope of the testing landscape, ensuring the highest degree of improved cyber
security without compromising ICS performance or safety. Each APP also includes examples of
tests and potential (or likely) vulnerabilities.

The vulnerability risk calculation has been transposed from an IT-based Common Vulnerability
Scoring System (CVSS) system to be more applicable to ICS systems (Chapter 4). This calculation
assesses the risk associated with vulnerabilities uncovered by the literature review and research,
and is used as a guideline (in conjunction with the APPs described above)to optimally select what
is to be tested. If a particular vulnerability has a low risk score, but could be very difficult to test
or if mitigation is onerous, it might be removed from the assessment. Conversely, if a vulnerabil-
ity carries with it a high risk score, and the mitigation approach is simple, it should strongly be
considered for further testing. An example of this selection process is given in Appendix A.

1.2 Applicability of the FDAM

While high capability threats are within scope (up to and including advanced adversaries), many
ICS implementations are vulnerable to much lower-capability adversaries and techniques. Simpler
vulnerabilities that require lower level of effort (LOE) are of higher concern, as are ones that have
a greater effect on device operations (which could affect the underlying physical process). The
degree of difficulty for detection or prevention of the vulnerability is also a factor. Furthermore,
to best analyze ICS cyber security, some level of opportunity (in the form of adversary access and
capability) must be assumed. Therefore, access denial for ICS field devices will attenuate risks and
complement mitigations described in a completed FDAM assessment report. Assuming reasonable
access is also most attuned for understanding operational test safety concerns.
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The DOD has a mature and proven approach for cyber security [4, 5] for networking and
higher level system support environments. The FDAM approach instead focuses on mitigating
risks specifically for fielded ICS devices, which in general have a less mature security framework
given the motivation and necessity to keep the devices running. Thus, the FDAM approach ensures
that mitigation efforts considered will:

1. Preserve system operation (to best support mission performance)

2. Prevent damage or degradation to associated physical systems

3. Deny attractive information from an ICS to an adversary

In general, the FDAM approach should be amenable to different deployment situations, including:

1. A given component in a specific application (e.g. a water pump control system)

2. A given component in a typical application (e.g. machinery control)

3. A given component in any application

The application may help characterize the technical configuration of the component or ICS, al-
though some variability is always expected given refresh cycles for weapons platforms. Of course,
less specificity may enable more generally useful conclusions; however, as specificity increases
there is more opportunity to understand vulnerabilities and mitigations (as an example, possible
physical domain mitigation steps that guard the controlled process against malfunctioning PLC).
In the Director, Operational Test and Evaluation (DOT&E) process for understanding cyber risk,
the results from analyses derived from this methodology will inform future structured cyber as-
sessments [3] by providing an important foundational characterization.

The FDAM is focused on mission platforms, which are heavily reliant on ICS. Examples in-
clude many naval shipboard systems (electrical plant management, machinery control, aircraft
launch/recovery, radar, fire control, and others), advanced ground vehicle management (engine
control/optimization, CANBUS-based networks, etc.), and aircraft/avionics (often based on VME
and 1553 bus). Although the FDAM is intended to support OTAs, cyber protection teams (CPTs),
and other organizations within DOD that support OT&E on weapons platforms and systems, but
it can also be applied to ICS used within DOD installations and other bases, particularly for in-
frastructure support (like electric power, water, physical security,lighting systems for flight lines,
radar, water treatment, access denial systems, heating/cooling plants, etc).
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1.3 Intended FDAM Results

The FDAM supports a range of DOD assessment requirements [1, 2] and the approach is suit-
able to varying classification levels, as application details and close-held government information
can be included when desirable (and useful). The information gathered by using the FDAM ap-
proach should be put into a final report (see Chapter 7) that summarizes the vulnerabilities and
mitigations that are to be lab tested (see Appendix A), results of the testing, and recommendations
regarding potential OT&E test damage/safety concerns and whether potential mitigations should
be implemented on an operational systems.
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Chapter 2

Framework for Analyzing ICS Field Devices

The FDAM is based on a generalized framework which has been developed to capture the cyber
security elements necessary to successfully use the approach. There are five categories for consid-
eration – adversary goals (G), procedures for cyber attack (P); access to the device environment
(A); device and system vulnerabilities (V); and cyber/physical mitigations (M). These categories,
with the subcomponents of each, are listed below:

• Adversary Goals (G)

– G1: Change behavior

– G2; Misrepresent state

– G3: Obtain or change data

– G4: Deny operation

– G5: Use as intermediate attack platform

• Procedures for Cyber Attack (P)

– P1: Achieve device management access

– P2: Gain privileged operational relationship

– P3: Impersonate the device

– P4: Affect device operation via atypical stimuli

• Access to the Device Environment (A)

– A1: Physical

– A2: Network

– A3: Secondary

– A4: Peer device

– A5: Engineering workstation

– A6: Supply chain

21



• Device and System Vulnerabilities (V)

– V1: Common problems/networking and communications

– V2: Common problems/architecture and management

– V3: Equipment-specific problems

– V4: Context- or application-specific problems

• Cyber and Physical Mitigations (M)

– M1: Defend – take actions that prevent unwanted access

– M2: Detect – monitor for unauthorized system access attempts

– M3: Manage – react appropriately to incidents and ensure successful recovery

Goals are achieved by procedures, which in turn are made possible via access, and involve the
exploitation of vulnerabilities to be successful. Vulnerabilities are best understood in the context
of an adversaries’ goals or intent, which may be specific or general to a desired scenario – this is
the threat. Cyber risks can be denied or attenuated by proper mitigation strategies (which could
encompass safeguards that limit the risk – for example, a purely mechanical pressure relief valve
would not allow an embedded device to catastrophically over-pressurize a pipe).

Each of the five categories is described in detail below. Note that in the access and procedure
categories, the descriptions include a notation that describes its prioritization within the FDAM
(the overall framework itself is general and applicable to many assessment situations, and so the
notation is necessary to describe its application for this work). This prioritization is key part of the
FDAM testing approach, and will be described in detail in Chapter 3 as prioritized APPs.

2.1 Adversary Goals

Goals for cyber attacks against embedded devices in ICS generally fall into five categories. An
adversary will seek one or more goals to achieve a desired effect in the underlying physical ar-
chitecture (weapons systems, electric supply, machinery control, oil/gas pipelines, manufacturing,
building automation, etc.).

• Goal G1 – Change behavior:
Changing the control settings or logic can lead to behavior that is advantageous to an ad-
versary. In extreme cases, this could cause or contribute to equipment damage, dangerous
hazards, or systems degradation/failure.

• Goal G2 – Misrepresent state:
Embedded devices form the boundary between control and the physical process. Vulnerabil-
ities might facilitate the device misrepresenting the process state (or its own), either directly
(the device itself is misrepresenting) or indirectly (the device can be easily impersonated).
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• Goal G3 – Obtain or change data:
Any embedded device may be more or less amenable to reporting potentially sensitive data
about itself or the underlying process to unauthorized actors, or toggling control based on
correctly-formatted protocol directions.

• Goal G4 – Deny operation:
Embedded devices are almost always expected to have very high uptime, particularly to man-
age potentially dangerous physical processes. Therefore, a short-term loss of functionality
– even partial – could be important. Straightforward vulnerabilities can permanently disable
some devices. Note that the denied operations are being analyzed from the perspective of
the field device itself; therefore, denial of communications external to the device would be
an example of a procedure that would be out-of-scope.

• Goal G5 – Use as intermediate attack platform:
An adversary can theoretically use any computing device as a network or systems beachhead
for further malevolent activities. This will usually take the form of a high-privilege interac-
tive session for the adversary, with the download and hosting of additional software tools
desirable. Very often, the architecture of embedded devices makes this goal unlikely, but it
remains reasonable for some scenarios – particularly if the embedded device is leveraging
more conventional hardware/software or has interesting connectivity.

Individual analysis for the targeted equipment will determine the likelihood of its susceptibil-
ity to these goals. Risk will depend on the chosen attack procedures, the access available to an
adversary, and vulnerabilities/mitigations for the equipment.

2.2 Procedures for Cyber Attack

An adversary has several generalized operations that can support realization of their goals. Pro-
cedures can be thought of as the net results of overall scenarios that adversarial manipulation of
the targeted equipment (a series of attack steps). For this category and the next (“access”), there
is a descriptor in each category that describes the analysis priority for a FDAM assessment (“for
the purposes of FDAM, this is listed as Priority #X”). This prioritization is key part of the testing
approach, and will be used as a foundation for the discussions in Chapter 3.
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• Procedure P1: Achieve device management access
Embedded devices can be thought of as running one or more software processes subject to
configuration parameters. In most devices, both software and parameters are configurable
and reprogrammable remotely, and nearly all support modification via the device’s serial
port or local interface. Typical configuration parameters include management-specific infor-
mation, like networking addresses, accounts (to the extent that the device supports them),
logging frequency and parameters, etc. Other configuration data affects the equipment’s
control and measurement of physical data, like control setpoints, measurement intervals and
scaling, ladder logic, etc. Device firmware encompasses all software outside of configura-
tion, including boot loaders, operating systems, software, and other data. Note that, in a
modular device, each component can contain configuration and firmware. Modifying the
device’s behavior could allow an adversary to achieve any goal (although G5 might be dif-
ficult if malware or tools are not available for the targeted equipment’s architecture). The
device hardware may also be changed to suit an adversary. Given the poor state of foren-
sics for many existing embedded systems, P1-type scenarios could easily lend themselves
to minimal probability of detection or attribution and because embedded devices have long
operational deployments, adversary-driven changes in configuration could have a long-term
presence.

For the purposes of FDAM, procedure P1 is included as Priority #2. This clearly has the
potential for extreme impacts to ICS devices and underlying physical systems.

• Procedure P2: Gain privileged operational relationship
Embedded devices often have weak or nonexistent capabilities to authenticate their peers
in operational relationships. As an example, a PLC running the Modbus protocol will reply
with current data to any well-formed data request that accesses a configured data register, and
would toggle process control similarly. Therefore, depending on the situation and access, an
adversary could easily gain valuable data and potentially affect processes (G3) by injecting
control data. This might involve accessing existing peer devices, adding customized hard-
ware to the network, or simply injecting network traffic. The ability to view device traffic
on a network could allow for unauthorized access to data being sent to or from an embed-
ded device (depending on the protocols and safeguards used), which is a type of privileged
relationship.

For the purposes of FDAM, procedure P2 is included as Priority #3. The unsecured nature
of automation protocols used by ICS devices lead to the likelihood than unauthorized parties
may issue false but authentic-looking requests for data or control, to whatever extent allowed
by the device configuration. This is of lower priority for additional analysis because of its
straightforward nature, and would only be investigated in depth if there were some unique
risks or technical details (although it clearly can have significant effects on the ICS and
underlying physical systems).
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• Procedure P3: Impersonate the device
The scenario described in P2 above also extends to the possibility of an attacker providing
or consuming data in place of a targeted piece of equipment. The authentic data messaging
for the targeted device could be blocked, changed, or ignored depending on the adversary’s
needs.

For the purposes of FDAM, procedure P3 is included as Priority #4. Impersonating the ICS
device to peer devices or supervisory control is also straightforward, similar in nature to
gaining a privileged operational relationship (P2). Therefore, this is also a relatively low
priority compared to other procedures.

• Procedure P4: Affect device operation via atypical stimuli
This type of procedure covers tactics not previously mentioned. The critical distinction for
this procedure is that all “atypical stimuli” are outside of the on the intended administration
or operations of the field device once deployed. Examples would include DOS attacks, sus-
ceptibility to radio frequency (RF) that affects operation or management, flaws in protocol
or server implementations that could crash the device, adding unauthorized hardware to the
system, leveraging debugging capabilities left over from the device development, etc. An-
other example: affecting the device programming using the vendor’s configuration software
to achieve goal G1 is an example of procedure P1, but leveraging a flaw in the device’s
network stack to overwrite firmware via a network connection is within procedure P4.

For the purposes of FDAM, procedure P4 is included as Priority #1. Although achieving
device management access conventionally (P1) has more degrees of mapping with respect
to goals, affecting device operation via atypical stimuli (P4) is a slightly higher priority for
investigation because of its associations with inadvertent effects to the device (both changing
behavior and denying operation – G1 and G4 respectively). Potential fragility or mistakes in
ICS network interface design, implementation, or configuration may lead to significant im-
pacts to the device from minimal stimuli, like aggressive networks scans or small sequences
of network traffic from attackers. Again, atypical stimuli includes any attacks outside of the
normal operational envelope or management via vendor-approved approaches.

2.3 Access to the Device Environment

Access allows the potential execution of steps in one or more selected procedures. Access repre-
sents a fundamental requirement for any planned procedure and, if unavailable, would negate the
feasibility of even attempting some procedures. However, access can be gained in many different
ways over diverse timeframes. As with the “Procedures” section, there is a descriptor describing
the priority of the access for the FDAM analysis. This prioritization will support developments in
Chapter 3.
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• Access A1 – Physical
Physical access refers to an adversary having the opportunity to touch the device. This af-
fords opportunities to change hardware or access non-networked communication ports. The
latter may be particularly sensitive. Many embedded devices include two primary types of
communications/networking interfaces; the first is for interacting with other system oper-
ational elements (such as servers in a control center or other embedded devices) for data
exchange and control, and the second is often a high-privilege connection used for device
configuration. (Often the functions of the second are replicated on the first for convenience,
and in some cases there is only a single interface for configuration and operations.) However,
if there is a dedicated configuration interface, then this represents a potentially attractive op-
portunity for an adversary if it can be physically accessed, because it typically has the highest
privilege levels available. If there are authentication challenges, these can be often defeated
by jumpers or other physical interfaces on the equipment. An adversary could also leverage
physical access to introduce additional equipment, either in the local network, on a configu-
ration interface, within the embedded device itself, or added to a modular chassis (like many
PLCs have). These can provide varying opportunities for procedures with low potential for
detection (depending on the site’s configuration control and monitoring scheme). Physical
access can also easily affect device configuration if the firmware is stored on removable me-
dia. Another particularly insidious type of access would be to achieve net physical access
using social engineering vectors (like the classic case of the USB drive in the parking lot).
Similarly, an adversary could game operators to manipulate ICS equipment to affect a num-
ber of procedures and achieve goals. Many physical access avenues could be very persistent
and stealthy.

For the purposes of FDAM, access A1 is listed as Priority #2. Many severe attacks are
possible given this level of access. The focus will be on achieving device management access
(P1) and causing atypical stimuli (P4); privileged relationships (P2) and impersonating the
device (P3) are not considered.

• Access A2 – Network
Embedded devices are very often networked via their operational interfaces to participate in
control with peer or remote systems. Networks can be based on legacy serial technology
or modern systems like Ethernet and TCP/IP. Local access would be network or commu-
nications access to the equipment with physical proximity. Typically, this will involve less
monitoring given the potential for physical access controls that are usually presumed to be ef-
fective. Remote network access would be from physically distant systems over a permanent
data connection, like through an ICS wide area network (WAN) or the cloud, and usually
includes greater monitoring and lower bandwidth than local.

For the purposes of FDAM, access A2 is listed as Priority #1. The network avenue has
large force multiplier for adversaries and enables stealthy remote attack. Also, the DOD is
concerned about potential CPT or opposing force (OPFOR) network auditing and testing
which could apply significant cyber stress to ICSs devices. Depending on configurations,
all procedures are likely feasible; however, gaining a privileged operational relationship
(P2) and impersonating the device (P3) have been regularly demonstrated and are of lower
priority barring some key differentiating factors for the equipment or situations under test.
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• Access A3 – Secondary communication
Permanent or periodic remote access can be intended for the equipment-owning entity to
gather data or manage configuration, or could be used via trusted partners like outsourced
technical management or vendors (many of which often require highly privileged access to
their equipment). This is separate from continuous network access (A2), in that if both A2
and A3 are present, they are on different networks with different technology and distinct
opportunities for adversaries. Often the secondary access will apply to a device’s dedicated
configuration (physical) port.

For the purposes of FDAM, this access avenue not in scope. The FDAM is focused on de-
vices, and data about deployment patterns (which would describe secondary access capabil-
ities) is likely absent. Therefore, it is unclear what opportunities there would be for remote
network access to device configuration ports. Subsequent analysis can consider relevant
analysis using physical access (A1) to inform risk from A3.

• Access A4 – Peer device
An adversary can access the functionality on a targeted device by successfully gaining privi-
leges on a peer device, and then exploit the existing trusted data relationships that support the
operations of the operational technology (OT) or ICS system. This would be a straightfor-
ward way to execute scenarios that depend on P2 (privileged operational relationship). This
may or may not allow for additional attack opportunities compared to A2 (network access).

For the purposes of FDAM, access A4 is listed as priority #4. Since the analyst often does not
have comprehensive insight into deployment patterns, and the focus is on device-level con-
cerns, this access approach is included only as they relate to designated remote input/output
(I/O) or coordinated control architectures for the field device under test. The best approach
for analysis will be to assume physical access to the peer devices or slave I/O (but not to the
master field device itself); this assumption may be reconsidered in light of device usage and
environment if that information is available.

• Access A5 – Engineering workstation
As noted in the “Procedures” discussion, unauthorized device management is a key problem
for embedded systems. One extremely attractive access opportunity would therefore be via
the platform that is normally used to manage and configure the targeted equipment (typically
called the engineering workstation – one or more computing platforms used by technicians
for authorized configuration control of embedded systems). Either the management software
itself or other hardware/software elements of the platform could be targeted. This is a type of
lifecycle access for the embedded device given the engineering workstation’s key role over
the deployment history for embedded systems.

For the purposes of FDAM, access A5 is listed as priority #3. This vector applies only to
gaining configuration access (P1), and is concerned with possible effects on the PLC given
attacks against the authorized copy of the device management software, assuming they are
connected at some point.
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• Access A6 – Supply chain

Another interesting avenue for access is to consider the possibility that an adversary has af-
fected the embedded devices’ hardware or software as it was being developed or sourced.
Trojan code or modified silicon may require very high investments to achieve, but for certain
classes of adversaries the possibilities are reasonable. Another avenue for access in this cat-
egory involves an adversary affecting the supply chain for product updates, particularly for
firmware. Although OT and ICS devices are rarely updated or patched by current practice,
there appears to be more acceptance coming for field updates to embedded devices. Under
those conditions, Trojan code may be introduced into systems for later use. Also, many ven-
dors retain privileged access via presumed private communications as a condition of their
equipment sale, and those channels present attractive targets for adversaries.

For the purposes of FDAM, this is not in scope, given all of the other vulnerabilities for ICS
devices. However, it is relevant for an advanced threat and should be considered separately
as needed. Also, the scope of these assessments does not include information regarding
intended vendor patch plans for DOD platforms (for either the device or its configuration
software), which is an important consideration for this access approach.

2.4 Device and System Vulnerabilities

For the planned analysis, consideration for vulnerabilities is needed to understand the potential
risks to operations from adversary access to embedded systems. Often, embedded systems – par-
ticularly for ICS – are susceptible to classes of common vulnerabilities based on the technology
space and the particular application. These common problems are investigated for the equipment
being analyzed within the categories shown. Other vulnerabilities may be specific to proprietary
design characteristics or implementation flaws, and those can be subcategorized into “known”
(publicly available information) or “close-held” (known only to small audiences, like the manufac-
turer, user groups, or government). Lastly, specific information about the device within the target
context may illuminate important vulnerabilities.

• Vulnerabilities V1 – Common problems/networking and communications

Vulnerabilities in this category relate to services that are supported by the embedded equip-
ment that are necessary to its function within common ICS or OT environments. Due to
legacy development focus solely on availability, protocols used by embedded devices lack
security services, and this is not a fault particular to any device.

• Vulnerabilities V2 – Common problems/architecture and management

These types of vulnerabilities relate to the devices themselves, and the way that they are built
and operated according to expectations within an established industry. An example for this
category would be the lack of account-based access; although this would be an attractive
security feature for role-based access control (RBAC), it is simply not a value-added feature
within the ICS market.
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• Vulnerabilities V3 – Equipment-specific problems
This category of vulnerabilities includes those from the design or implementation of the
device or equipment. There are two subcategories: well-known problems (information is
available publicly) and closely-held problems (known only to limited groups or within the
government). There are three primary sources for known vulnerabilities: information from
the manufacturer, vulnerability reporting authorities like Industrial Control Systems Cyber
Emergency Response Team (ICS-CERT), and relevant user communities including ones
within government. While equipment-specific close-held problems may range from sim-
plistic to extraordinarily sensitive, they are enormously useful information for this sort of
cyber analysis.

• Vulnerabilities V4 – Context- or application-specific problems
Finally, the device vulnerabilities can be highlighted by considering the actual application
or deployment environment. This would be particularly useful to better understand the dis-
cussion of common vulnerabilities, and the existence of specific vulnerabilities within the
specific context (i.e. a known software patch level would clearly settle any issue of specific
vulnerabilities being present).

2.5 Cyber Risk Mitigation

Mitigations are a key focus for FDAM. However, they are often less emphasized during device
analysis than vulnerability discovery. Therefore, their introduction is somewhat more detailed
than the prior framework elements. As described previously, mitigations in the FDAM framework
are categorized as follows:

• M1: Defend vulnerabilities (reduce exposure)

• M2: Detect attacks (monitor and alarm)

• M3: Manage incidents (attenuate impacts and recover)

It is important to note that in for the purposes of this analysis, mitigations do not refer to ac-
cess denial, which is a separate category of countermeasures, and an area where DOD already
has numerous policies and procedures. Access denial will certainly help to manage risk. Miti-
gations might be commonly applied either to manage common vulnerabilities via cyber controls
(an example of this might be configuration monitoring) or to guard against physical effects via
physical controls (like pressure relief valves or fuses, which are not attackable via cyber means but
could lead to extended equipment outages). Mitigations may be specific to an ICS or a particular
application or context.
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Some mitigations, particularly those in M3, can be best analyzed by considering the actual
deployment environment. An example could be an electrical fuse in a power system, where an
embedded device (a relay) has the primary responsibility for detecting and clearing short circuits,
but in the event of relay failure the fuse will blow. Preferably, the short circuit is managed by the
embedded device, because it allows for easier restoration of service (perhaps recloser control for a
transient issue) compared to needing to dispatch a crew to replace the fuse. However, the potential
overall effect is greatly reduced by adding a fuse, instead of an adversary compelling relays to
completely ignore a fault and leading to possible damage and safety impact.

2.5.1 M1 – Defend

Vulnerabilities can be defended by deploying compensatory measures: configuration access should
be logged and monitored by additional overhead software; firewalls can be used to create ICS en-
claves and defend against abnormal networking traffic; unauthenticated open protocols for com-
munication and substandard configuration authentication can be protected; and jumpers to reset
passwords can be physically protected. However, the reality of ICS are that they are designed for
reliability, and to date poor security is not seen as a force that could reduce reliability. Unfortu-
nately, this makes the addition of security devices that add possible failures an unlikely option,
although the balance between greater numbers of failures caused by non-adversarial stimuli versus
the actual reliability of an unprotected ICS should be considered.

The nature of ICS supports a whitelisting approach, which starts with effective characterization
of allowed network communications. There are two major options to consider when considering
defensive mitigation strategy:

• Blocking unallowable types of activity (perhaps based on network protocols)

• Blocking unallowable types of activity and also unreasonable settings or data within allowed
activities

The former is relatively straightforward to implement, while the latter (a more behavioral ap-
proach) is more challenging, but provides better protection. Consider a system using Modbus/TCP
for communications. There may be attacks that attempt to change setpoints outside allowable sys-
tem bounds (which can effect the capabilities of the physical process being controlled, or might be
associated with expectations based on current operations). R&D efforts suggest that machine learn-
ing techniques for behavioral monitoring are feasible and useful (although false positives would be
a threat to impact legitimate operation).

Alternatively, cyber vulnerabilities can be left in place, with some potential issues managed
by physical devices. Locked cabinets or physical barriers can help protect jumper settings and
removable memory from tampering and limit RF or EM exposure. Unfortunately, strong physical
protections may be compromised by poorly considered convenience features. An example would
be a PLC locked within a cabinet, but with the device’s serial configuration port extended outside
of the enclosure via a cable.
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Depending on the specific ICS device, there might be both well-known and closely-held miti-
gations, although mitigation steps are often less sensitive than vulnerabilities. Equipment-specific
mitigations could be cyber (using vendor-specific security services) or physical (using key-based
run/program selectors to limit device reconfiguration opportunities – assuming they cannot be by-
passed via software, and this is often the case). Another vendor specific mitigation is to ensure
that all patching and updates are in place for specific equipment. However, unlike the patching /
update approach used in IT, this might not happen in ICS systems due to downtime associated with
implementation and testing/recertification necessary to bring the system back to operational use.
However, a patching / update approach is vital to ICS security, and should be strongly considered,
(as long as business/warranty issues are adequately addressed). Careful planning (and possible
testing) can ensure patching is done with minimal effects on the system.

Other opportunities for defense include leveraging vendor-supplied security features to the
greatest extent allowed by the device’s application. Examples include:

• Configuration authentication procedures (which often have significant weaknesses)

• Network encryption or authentication (granted, this is unlikely to be supported by ICS de-
vices)

• Setting read-only permissions (possibly using physical settings, although these can some-
times be circumvented via cyber attack)

2.5.2 M2 – Detect

Given the reluctance of ICS stakeholders for potentially degrading reliability by inserting com-
ponents to defend systems, attack/incident detection is the key opportunity to reduce cyber risk.
Detection is especially attractive if it is accomplished by sensors that unobtrusively monitor sig-
nals without adding security equipment in-line with systems and operational data flows.

Monitoring can be categorized into the same two major options from the defense discussion.
Clearly, any communications protocols that are outside of the narrowly defined allowed set are
evidence of misoperation and potentially a cyber intrusion. However, the behavioral model allows
stronger detection. As an example, consider network traffic associated with remote configuration
of a PLC. Although this may be necessary to the proper functioning and administration of a sys-
tem, a traffic signature showing an active configuration session that is outside normal maintenance
intervals would be cause for concern. Monitoring for reasonable setpoints along the lines of the
M1 discussion for defense would also be very useful.
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Because of their recognized importance, ICS field devices may include some state-of-health
monitoring that could detect cyber attack. Also, tracking device configuration is an excellent de-
fense, particularly given the small amounts of memory in typical field devices. For the majority
of devices, very little (if any) change for most of the memory space (except operational data reg-
isters) is expected when the device is operating normally. However, the great range of variation
in the architecture of field devices will require customization for any configuration monitoring
countermeasures.

Another opportunity is independent cyber monitoring within the device. If the component is
modular (with a backplane) or has reasonably accessible signal buses, a monitoring device listen
to the conversations between the component’s constituent modules. Such devices are under active
development [6]. Because of the granularity in communications, a backplane/bus monitor can
uniquely observe behavior of the control system independent of the processor and alert when the
system is not operating within a specifically defined manner defined by whitelisting and behavioral
heuristics. Because it alerts on effects of an attack in progress, and not on signatures of prior
attacks, countermeasures like backplane or bus monitoring can detect zero-day exploits [7].

The concepts that support the backplane/bus monitoring approach also can be applied on the
physical process side of the ICS field device. This may be realized using a second, independent
system to monitor the protected device’s output signals to ensure they are suitable for the process
and context. However, this is far more resource intensive than a backplane/bus monitor approach,
which itself is only one step behind the analog I/O equipment within the device.

Physical security monitoring is complementary to defense measures. Countermeasures like
cabinet and access door alarms are almost always good suggestions for mitigation. In contrast
with IT systems, early R&D results for ICS suggest that monitoring power draw for components (a
physical signature) may be a reliable indicator of off-nominal operation that potentially indicates
an attack) [8].

2.5.3 M3 – Manage

Cyber attacks against ICS can cause damage to the physical processes being monitored and con-
trolled. Defense and detection based mitigations (M1 and M2) that prevent such damage are pre-
ferred but may be infeasible or unreasonable, and so mitigations intended to manage incidents
often play an important and necessary role. Mitigations in this category can minimize impact to
the physical processes and aid in efficient and safe device recovery in order to restore both local and
supervisory functionality while preserving needed forensic indicators. Device recovery can occur
over varying time frames and require varying levels of administrative intervention (in ascending
order of impact to ICS operations):
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• Automatic: the device restores itself to operational status after an error condition is detected

• Remote: a qualified admin can restore the device

• Local: qualified admins and/or technicians require physical access to repair/restore the de-
vice

Given these parameters, hierarchies of recovery can be described (again, in ascending order of
impact to operations):

• Automatic self-recovery with short, acceptable delay

• Restore remotely with quick procedure (e.g. toggle a setting)

• Restore remotely with involved procedure (e.g. reload configuration/firmware)

• Restore locally with quick procedure (e.g. rotate key without reset, power toggle)

• Restore locally with involved procedure (e.g. reload configuration/firmware)

• Partially or completely unrecoverable (replace hardware and restore firmware)

Some equipment includes watchdog timers, either in software or hardware, which can monitor
device operation and restore/restart critical components if needed. Care is needed to ensure that
important incident response forensics data are not sacrificed by these countermeasures.

Another defensive approach is to include reasonable amounts of physical protection measures
for critical components, such as fuses in an electrical circuit or tank and pipe overpressure valves,
to prevent damage even with a fully successful attack. This may require additional overhead to
maintain the physical system, but could be minimized with an effective design.

A final countermeasure (that does not have precedent in modern ICS) is to fit the analog out-
puts from ICS field devices with limiter circuits to ensure a minimal safe operating envelope for the
physical system. There are two drawbacks to this approach that need to be considered: first, this in-
creases the complexity of the overall control system (and thus raises the testing/certification burden
while reducing reliability); and second, analog circuits inherently experience drift and must often
be tuned. However, an effectively-designed and simple analog circuit could minimize impacts and
damage even if it could not entirely prevent them, which would be an overall improvement for
managing cyber risk.
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Chapter 3

Applying the Framework to Develop and
Prioritize Access/Procedure Pairs

A unique feature of the FDAM is the introduction of APPs. The APPs have been developed based
on empirical data and experience over the last several decades. Out of 16 potential APPs (4 types
of access– six total less 2 out-of-scope – and 4 procedures), nine are used in the FDAM approach.
Some are excluded given the device-centric theme of the FDAM, and others are emphasized based
on several decades of ICS device testing as the most effective to achieve overall risk reduction.

As part of the FDAM approach, vulnerabilities and mitigations are found via a literature review
and device physical examination, and also through lab testing. Because not every vulnerability can
be tested due to time and resource limitations, the set of possibilities is down-selected for testing.
Part of the down selection process includes associating each vulnerability and related mitigation
with the appropriate APP – see Appendix A for a detailed example of this test scoping process.

The APPs are presented in prioritized order in Table 3.1, followed by in-depth descriptions
including approaches and testing tactics that can be used to verify vulnerabilities that fall under
each APP – clearly this is the “verification” aspect of the V/C testing introduced in Chapter 1
(and detailed later in Chapter 6). In addition to using the tactics and approaches listed to verify
vulnerabilities, other vulnerabilities might also be discovered in the process – resulting in the
“characterization” of the device being tested.

The mapping between APP and goals is also shown in Table 3.1 and is similar for most em-
bedded devices. Procedure P1 (achieving device management access) supports all goals, because
it is a critical and fundamental issue. Otherwise, privileged relationships (P2) allow for obtain-
ing/changing data (G3), device impersonation (P3) enables misrepresented state (G2), and atypical
stimuli (P4) support denied operation (G4) and behavior change (G1). Given the device-centric
approach for this analysis, individual goals are not stressed, but clearly P1 and P4 represent inter-
esting avenues to impacting the device itself (G1 and G4). The other goals remain important, but
more in the context of systems instead of individual device assessment. (Note that slave remote
I/O for a PLC, coordinated automated control among PLCs, and supervisory control is considered
as part of the assessment, under access P4.)
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3.1 Network Access (A2) and Atypical Stimuli (P4) to Change
Behavior (G1) or Deny Operation (G4)

Within this category, one key tactic is network scanning (e.g. nmap/Nessus, either regular or
aggressive, and generic or tailored for the device), spoofing, or flooding in order to attempt to
get the ICS to fault, go offline, or slow down. Another important vector is the use of single- or
few-packet attacks that have unreasonably large effects to device operation. These would have
the same goals, but instead leverage network services (like an unpatched FTP server, vulnerable
automation protocols, etc.) or packet replay/custom packets against overly permissive or faulty
PLC network interfaces, preferably including reasonable variation in tactics. In some extreme ex-
amples, vulnerabilities might allow for direct memory access. Note that these attacks may affect
firmware or memory, but this is distinct from A2-P1 (see the following section) in tactics; here,
the usage of the P4 designator indicates abnormal network traffic outside of intended vendor op-
erational/configuration procedures attempting to exploit vulnerabilities (which can affect device
operation and/or configuration).

There may be special concerns when attempting to affect firmware via atypical stimuli (which
by definition is being done outside using conventional vendor management procedures since those
are encompassed by P1). Many PLCs have configuration information (ladder logic, I/O memory
mapping, etc) compiled together with application code within the configuration software, resulting
in one or more segments of code being subsequently sent to the device. Under those circumstances,
an unsophisticated attack from the network without vendor configuration software might not dis-
criminate between application and configuration information, leading to unpredictable results.

3.2 Network Access (A2) and Device Management (P1) to
Achieve Any Goal (G1-5)

This attack avenue is primarily concerned with network access and vendor software or procedures
(for example, some use FTP) to affect firmware (including the device bootloader, executables,
and/or configuration). Analysts should include the following approaches when testing vulnerabili-
ties or mitigations that are associated with this APP.

• Using legitimate vendor software (modeled as adversary-owned – not the legitimate copy
used for the PLC deployment, but one without any a priori device relationships – in order to
simulate any vulnerabilities associated with the device/software relationship)

• Vendor-implemented access methods like network services offered by the device’s network
interface (e.g. FTP, Telnet, SSH, etc.)
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Firmware tactics include (in increasing order of difficulty): reading (which may supply a start-
ing point for modification, represent a theft of sensitive information, or an opportunity to search
for vulnerabilities and hardcoded credentials), blanking, altering configuration, altering applica-
tion code, or altering the bootloader. Since all components of a modular PLC include some sort
of programming or firmware, the preferred order of targeting is: central processing unit (CPU) or
processing, networking/communications, and finally I/O (note that I/O modules are last because
there is little expectation of a significant attack surface, although they are very interesting target).
Often, not all devices have all layers (most likely there are not bootloaders on I/O).

Some vendors use separate processes for changing application software versus configuration
information on a device’s processor module, and under those circumstances the attacker may have
more granularity for targeting. Also, some other modules (possibly including the network card)
may have configuration information supplied directly (i.e. without compiling), which may allow
for higher-discrimination attacks.

Network/communications modules are seemingly attractive for A2/P1 attacks, since they often
run conventional operating systems (VxWorks, WinCE, etc.). The CPU firmware is generally quite
opaque, which will make some of the more advanced attacks (ones targeting altered firmware) quite
difficult as they normally require much more reverse engineering. Changing application code or
configurations on the network card may be a low-cost path for an adversary seeking specific effects.
For example, the network card might be directed to stop at an assigned time, send erroneous
settings along the PLC backplane to I/O, communicate illegitimate network automation messaging
to other PLCs to affect a process, help exfiltrate data, etc. Simple P1 actions from the network
(A2) may knock the PLC out of a subnet and stop all control and messaging with other devices.

3.3 Physical Access (A1) and Atypical Stimuli (P4) to Change
Behavior (G1) or Deny Operation (G4)

Tactics include reasonable, atypical physical stimuli to the PLC done in order to affect operation
or operation (any effect that allows G1 carries the same caveat as A2-P4):

• Power cycling

• Effects in device electrical supply (like abnormal power quality)

• Effects caused by RF/EM stimuli

• Remove/exchange/add modules or submodules

• Remove memory cards/chips while powered

• Access JTAG-like functions
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The investigation should proceed from simpler vectors to more complex. For example, the
assessment should note the effects when power is cycled, including the recovery time, effects on
operations, re-establishing communications with peer devices or sub-chassis, or possible problems
with physical processes that might be sensitive to the delays. Similarly, analysts should evaluate
effects from pulling a module (including the power supply, if it is removable) or perhaps the ter-
minal block on the front of an I/O card, particularly if physical damage is feasible. If possible,
the analyst can consider the possibility that an adversary adds a hacked module or something else
to the backplane or to a local port in order to achieve nefarious goals (specifically for P4, in or-
der to deny or alter device operation without utilizing intended vendor configuration procedures).
Also, if memory is removable (like a chip or card), then the assessment should measure the effects.
Finally, JTAG connections or other test/debug ports offer enormous attack opportunity and could
be investigated in this stage of the analysis as presumably any aspect of firmware is potentially
targetable in this manner.

3.4 Physical Access (A1) and Device Management (P1) to
Achieve Any Goal (G1-5)

For this section, some key attack opportunities include:

• Move jumpers or change switch positions

• Exchange memory cards/chips during power cycles

• Inserting USB/peripherals

• Accessing local configuration ports (that are distinct from the primary network port)

The analysis should check whether there are reset switches or jumpers that could blank firmware
or reset security access authorization, or perhaps switches (like RUN/PROGRAM or REMOTE/
LOCAL) that affect operation. Also, if memory is removable, then the assessment should evalu-
ate the possibility of changing device configuration via the exchange, and the needed procedures
to accomplish that (power cycling, logic reload, automatic operational change, etc.). In addition,
given their potential to circumvent air gap perimeters, USB key vectors, electronic warfare (EW),
and RF-enabled cyber may be included if feasible.

There is a critical avenue for investigation if any of the PLC modules offer a local configuration
or access port that is distinct from the primary network port. These local access ports are often
serial DB9 connections. They may offer better access to configurations – meaning there might be
less access authorization (or perhaps the bootloader is only readable/changeable via local serial
ports). The scope of tactics for local device access is the same as for A2-P1, including legitimate
vendor software (modeled as adversary-owned), vendor-described access methods, attacks against
vulnerable services on local ports, or other hacks that may affect firmware.
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3.5 Engineering Workstation Access (A5) and Device
Management (P1) to Achieve Any Goal (G1-5)

The target of investigation in these attacks is the authorized copy (or copies) of the vendor-
designated configuration capability intended for use on the given PLC. Very often, this takes the
form of a laptop with various connectivity options and some enforcement of user security. Other
times, there is an “engineering workstation” that is permanently connected to an automation net-
work that is used for the task. In both A2- and A1-P1, the effects of attacks using copies of the
vendor software (but not the authorized copies themselves) were considered. This is a critical
distinction, as there may be severe technical difficulties achieving P1 without the legitimate copy
of the authorized software. The engineering workstation copy may already include the target PLC
configuration (which could be critical if they are not easily read from the device) that may be a nec-
essary first step for modifying firmware. Alternatively, there might be stored security credentials
that allow for easier access to device firmware (although this is unlikely – in many cases, a user
authenticates to the local configuration software, authorized or unauthorized, and not the PLC).
Finally, A2 or A1 may not be achievable for an adversary, and achieving A5 (possibly via social
engineering or attacking the host OS) might be the best alternative.

Therefore, the tactics to be investigated for the A5 target include the ones previously described
in A2-P1 or A1-P1, but emphasizing the additional opportunities of stealing PLC firmware, con-
figurations, or access tokens. The analysis should also (as feasible) investigate the possibility
of changing local PLC firmware or configurations on the authorized configuration management
platform in a way that will eventually make it to the operating device (which may amount to a
significant amount of reverse engineering (RE) against the OS and vendor software).

3.6 Peer Device Access (A4) and Atypical Stimuli (P4) to
Change Behavior (G1) or Deny Operation (G4)

A4 refers to a peer device, and in this case references a subchassis for the primary PLC (given
that it does operate autonomously to at least some extent) or some other device with an existing
privileged relationship to target field device (perhaps another PLC or an ICS server) that affords
opportunities for P4 that are different than those achievable via simple network access (A2). One
key concern is that a PLC subchassis might be more accessible than the primary PLC, so the
analysis should assume full access – including physical if necessary – to the subchassis in order
to gauge the vulnerability to the main unit via A4. These connections are typically either serial or
TCP/IP (often separate from the main ICS WAN, covered in A2), although highway addressable
remote transducer (HART) or others might be encountered. When the connections are similar to
the primary PLC network connection, then it is a straightforward argument that the results from
the A2-P4 investigations are relevant. However, if these connections employ different TCP/IP
networking modules, then the analysis process should be repeated. Also, if A4 access is via a
TCP/IP network card, then the same issues for A2-P4 need to be considered to try and get the
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PLC to fault, go offline, or slow down significantly: scans (whatever is applicable to the interface);
single- or few-message attacks leveraging port services (likely confined to the designated port
protocol, but the possibility of others should be considered) or faulty port software, etc.; this may
also include fuzzing. The results may affect firmware or memory, but this is again considered
distinct from A4-P1 (as these are characterized as atypical stimuli).

3.7 Peer Device Access (A4) and Device Management (P1) to
Achieve Any Goal (G1-5)

This attack scenario is relevant only if the port used for the peer or subchassis communications
allows for device management. Indirect attack via an adversary accessing the designated supervi-
sory control platform is also included. For TCP/IP networks, this is unlikely to be different from
A2-P1, or from A1-P1 for serial networks. Any differences should be noted.

3.8 Network Access (A2) and Privileged Operational
Relationship (P2) to Obtain/Change Data (G3)

Using network access, direct device operation using seemingly legitimate commands and/or read
data from device. Given the known poor state of ICS protocol cyber security, this access/procedure
pair is not novel, so only limited analysis is expedient to avoid expending project resources on
known problems. However, successful commands via the network can still cause the field device
to innocently execute control changes that can affect the underlying process.

3.9 Network Access (A2) and Device Impersonation (P3) to
Misrepresent State (G2)

Similarly to A2-P2, known problems with protocols allow an attacker to intercept device commu-
nications and send false messaging upstream. Barring any unique aspects to this problem, minimal
analysis is warranted.
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Chapter 4

Cyber Risk Quantification

System and device vulnerabilities can be uncovered by several approaches detailed in the next
two chapters (literature review, device physical examination, and two stages of lab testing). It is
not uncommon for a single device to have multiple associated vulnerabilities, and so the tester
will most likely come up with a long list of potential vulnerabilities when researching a specific
ICS device. However, not all vulnerabilities are created equal – some are associated with much
higher risk that others. The risk calculation presented here is a tool used to quantify and score the
risk posed by each vulnerability. Once each vulnerability is scored, it can be further ranked by
associating it with its associated APPs presented in Chapter 3 to determine if it should be tested
later (testing is covered in Chapter 6).

The risk calculation presented here leverages the CVSS methodology, used by National Insti-
tute of Standards and Technology (NIST) and United States Computer Emergency Readiness Team
(US-CERT). The CVSS system was designed for IT, and so it emphasizes different priorities and
scoring options that are not applicable for ICS. However, the basic structure of the CVSS system
is valid, and has been repurposed to be applicable to ICS devices (with the caveat that normalized
ICS scores are only comparable with like scores, and are not one-to-one comparable with normal
CVSS IT scores).

According to CVSS, a “base score” depends on quantitative scores for impact and exploitability
according to the following formula:

Score = Exploitability+ Impact (4.1)

The CVSS formula for exploitability is:

8.22(Attack Vector)(Attack Complexity)(Privilege Required)(User Interaction) (4.2)

And the confidentiality (C), integrity (I), availability (A) total impact score per CVSS is determined
according to the following:

6.42(1− ((1− Impact.C) (1− Impact.I) (1− Impact.A))) (4.3)
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Once calculated, the score in equation 4.1 is rounded up or down to one decimal place (and
limited to the allowable range of 1 to 10 if needed). The CVSS formulas will be used as given
for the FDAM ratings. The severities shown in Table 4.1 are assigned by CVSS, but these do not
account for the importance of ICS and so should be carefully considered at the lower end.

Rating Risk Score

None 0.0 - 0.1
Low 0.1 - 3.9
Medium 4.0 - 6.9
High 7.0 - 8.9
Critical 9.0 - 10.0

Table 4.1: Qualitative severity rating scale

The individual ratings and corresponding quantitative values for the metrics are shown in Table
4.2. The determination of each score is addressed in the subsequent sections. Each will intro-
duce the metric and the original CVSS considerations, and then describe how they are used in the
FDAM.

Metric Metric Value Numerical Value

Attack Vector

Network 0.85
Adjacent 0.62
Local 0.55
Physical 0.20

Attack Complexity
Low 0.77
High 0.44

Privilege Required
None 0.85
Low 0.62
High 0.27

User Interaction
None 0.85
Required 0.62

C, I, A Impact
High 0.56
Low 0.22
None 0.00

Table 4.2: Metric values
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4.1 Attack Vector

This category maps to the FDAM framework access category, and it will not be affected by pro-
cedure or mitigation considerations. Table 4.3 includes the rating, numeric score, original CVSS
definition, and the mapping to the FDAM access categorization.

Metric
Value CVSS Standard Description FDAM

Description

Network
(N): 0.85

A vulnerability exploitable with network access means the
vulnerable component is bound to the network stack and the
attacker’s path is through OSI layer 3 (the network layer). Such a
vulnerability is often termed “remotely exploitable” and can be
thought of as an attack being exploitable one or more network
hops away (e.g. across layer 3 boundaries from routers). An
example of a network attack is an attacker causing a denial of
service (DoS) by sending a specially crafted TCP packet from
across the public Internet (e.g. CVE-2004-0230).

Includes any A2
or A4 that
works across
router
boundaries.

Adjacent
(A): 0.62

A vulnerability exploitable with adjacent network access means
the vulnerable component is bound to the network stack, however
the attack is limited to the same shared physical (e.g. Bluetooth,
IEEE 802.11), or logical (e.g. local IP subnet) network, and
cannot be performed across an OSI layer 3 boundary (e.g. a
router). An example of an Adjacent attack would be an ARP
(IPv4) or neighbor discovery (IPv6) flood leading to a denial of
service on the local LAN segment. See also CVE-2013-6014.

Includes any A2
or A4 limited by
a router
boundary (a
single collision
domain).

Local
(L): 0.55

A vulnerability exploitable with local access means that the
vulnerable component is not bound to the network stack, and the
attacker’s path is via read/write/execute capabilities. In some
cases, the attacker may be logged in locally in order to exploit the
vulnerability; otherwise, she may rely on user Interaction to
execute a malicious file.

A3 explicitly
relies on user
interaction.

Physical
(P): 0.20

A vulnerability exploitable with physical access requires the
attacker to physically touch or manipulate the vulnerable
component. Physical interaction may be brief (e.g. evil maid
attack) or persistent. An example of such an attack is a cold boot
attack, which allows an attacker to access to disk encryption keys
after gaining physical access to the system, or peripheral attacks
such as Firewire/USB Direct Memory Access attacks.

Same as CVSS
(A1 is an exact
match for the
CVSS
definition).

Table 4.3: Risk scoring: attack vector
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4.2 Attack Complexity

This category is a binary choice measure that will characterize the simplicity (or complexity) of the
procedure (assuming some given access level), but not emphasizing the magnitude of the effort.
Mostly, for FDAM, the attack complexity will map to the amount of prior knowledge (device infor-
mation and situational reconnaissance) and/or specific conditions that must be met to successfully
execute the vulnerability against the target system. Table 4.4 includes the rating, numeric score,
original CVSS definition, and the mapping to the FDAM complexity categorization.

Metric
Value CVSS Standard Description FDAM

Description

Low (L):
0.77

Specialized access conditions or extenuating circumstances do
not exist. An attacker can expect repeatable success against the
vulnerable component.

Includes all severe
vulnerabilities for
P4 and P1.

High (H):
0.44

A successful attack depends on conditions beyond the
attacker’s control. That is, a successful attack cannot be
accomplished at will, but requires the attacker to invest in some
measurable amount of effort in preparation or execution against
the vulnerable component before a successful attack can be
expected. For example, a successful attack may depend on an
attacker overcoming any of the following conditions:
• The attacker must conduct target-specific reconnaissance. For
example, on target configuration settings, sequence numbers,
shared secrets, etc.
• The attacker must prepare the target environment to improve
exploit reliability. For example, repeated exploitation to win a
race condition, or overcoming advanced exploit mitigation
techniques.
• The attacker must inject herself into the logical network path
between the target and the resource requested by the victim in
order to read and/or modify network communications (e.g. man
in the middle attack).

Includes
vulnerabilities
allowing P1 or P4
with either
significant
reconnaissance or
extenuating
circumstances, and
nearly all P2/P3 (as
protocol-based
vulnerabilities
nearly always
require some
reconnaissance to
learn the data
scheme).

Table 4.4: Risk scoring: attack complexity
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4.3 Privileges Required

This category is primarily concerned with a measure of the authorization level (after assuming
the given access) needed to leverage the vulnerability within a procedure. Table 4.5 includes the
rating, numeric score, original CVSS definition, and the mapping to the FDAM for this metric.

Metric
Value CVSS Standard Description FDAM

Description

None (N):
0.85

The attacker is unauthorized prior to attack, and therefore does not
require any access to settings or files to carry out an attack.

Same as
CVSS.

Low (L):
0.62

The attacker is authorized with (i.e. requires) privileges that
provide basic user capabilities that could normally affect only
settings and files owned by a user. Alternatively, an attacker with
Low privileges may have the ability to cause an impact only to
non-sensitive resources.

Same as
CVSS (note
that nearly all
P2/P3 will be
here).

High (H):
0.27

The attacker is authorized with (i.e. requires) privileges that
provide significant (e.g. administrative) control over the vulnerable
component that could affect component-wide settings and files.

Same as
CVSS.

Table 4.5: Risk scoring: privileges required

4.4 User Interaction

This metric is a simple binary measure of the need (or not) of user action to allow an attacker to
exploit the vulnerability. Table 4.6 includes the rating, numeric score, original CVSS definition,
and the mapping to the FDAM for this metric.

Metric
Value CVSS Standard Description FDAM Description

None (N):
0.85

The vulnerable system can be exploited without
interaction from any user.

Same as CVSS.

Required
(R): 0.62

Successful exploitation of this vulnerability requires
a user to take some action before the vulnerability
can be exploited. For example, a successful exploit
may only be possible during the installation of an
application by a system administrator.

Includes all A3 (Table 4.3)
and other vulnerabilities that
depend on user action (like
replay attacks, USB
insertion, etc.).

Table 4.6: Risk scoring: user interaction
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4.5 Confidentiality Impact

The interpretation of confidentiality in FDAM is the extent that the vulnerability reveals data,
including reconnaissance for later adversary action. A high rating indicates that information about
the logic of a system is revealed, while a low rating represents a loss of operational data. Table
4.7 includes the rating, numeric score, original CVSS definition, and the mapping to the FDAM
confidentiality impact.

Metric
Value CVSS Standard Description FDAM Description

High (H):
0.56

There is total loss of confidentiality, resulting in all
resources within the impacted component being
divulged to the attacker. Alternatively, access to only
some restricted information is obtained, but the
disclosed information presents a direct, serious
impact. For example, an attacker steals the
administrator’s password, or private encryption keys
of a web server.

Loss of confidentiality for
system logic or key device
configuration parameters
(including authentication
information).

Low (L):
0.22

There is some loss of confidentiality. Access to
some restricted information is obtained, but the
attacker does not have control over what information
is obtained, or the amount or kind of loss is
constrained. The information disclosure does not
cause a direct, serious loss to the impacted
component.

Loss of confidentiality for
system operational
information.

None (N):
0

There is no loss of confidentiality within the
impacted component.

Same as CVSS.

Table 4.7: Risk scoring: confidentiality impact
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4.6 Integrity Impact

Integrity for ICS field devices refers to the accuracy for both device and system data as well as
the operational configuration. In particular, integrity of the field device’s operations refers to it
executing its functions in a timely and accurate manner, both of which can be affected by adversary
action. In an extreme case, this could lead to a loss of control functionality (clearly, this could
also be an availability issue, but for this modified CVSS ICS formulation, it is noted here as a
characteristic of integrity). Table 4.8 includes the rating, numeric score, original CVSS definition,
and the mapping to the FDAM integrity impact.

Metric
Value CVSS Standard Description FDAM Description

High (H):
0.56

There is a total loss of integrity, or a complete
loss of protection. For example, the attacker is
able to modify any/all files protected by the
impacted component. Alternatively, only some
files can be modified, but malicious modification
would present a direct, serious consequence to
the impacted component.

Modification of device
configuration (via P1 or P4),
including firmware, logic,
addressing, or authentication
information, including
corresponding impacts to local
control.

Low (L):
0.22

Modification of data is possible, but the attacker
does not have control over the consequence of a
modification, or the amount of modification is
constrained. The data modification does not
have a direct, serious impact on the impacted
component.

Modification of operational
information to/from the
device/sub-chassis, including
corresponding impacts to
supervisory control. Although
there is not a serious loss for the
device, there may be significant
impact to the controlled process.

None (N):
0

There is no loss of integrity within the impacted
component.

Same as CVSS.

Table 4.8: Risk scoring: integrity impact
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4.7 Availability Impact

Availability for ICS field devices refers to the duration of downtime, which is crucial for these
systems. The downtime is directly associated with the effort involved in restoring the device to
its intended operation. Only three levels and a simple criterion are used, to maintain compatibility
with the CVSS system. Table 4.9 includes the rating, numeric score, original CVSS definition, and
the mapping to the FDAM availability impact.

Metric
Value CVSS Standard Description FDAM

Description

High (H):
0.56

There is total loss of availability, resulting in the attacker
being able to fully deny access to resources in the impacted
component; this loss is either sustained (while the attacker
continues to deliver the attack) or persistent (the condition
persists even after the attack has completed). Alternatively, the
attacker has the ability to deny some availability, but the loss
of availability presents a direct, serious consequence to the
impacted component (e.g., the attacker cannot disrupt existing
connections, but can prevent new connections; the attacker can
repeatedly exploit a vulnerability that, in each instance of a
successful attack, leaks a only small amount of memory, but
after repeated exploitation causes a service to become
completely unavailable).

Requires physical
user intervention to
restore the field
device to
operation.

Low (L):
0.22

There is reduced performance or interruptions in resource
availability. Even if repeated exploitation of the vulnerability
is possible, the attacker does not have the ability to completely
deny service to legitimate users. The resources in the impacted
component are either partially available all of the time, or fully
available only some of the time, but overall there is no direct,
serious consequence to the impacted component.

Requires remote
user intervention to
restore the field
device to
operation.

None (N):
0

There is no impact to availability within the impacted
component.

Same as CVSS.

Table 4.9: Risk scoring: availability impact

50



Chapter 5

Literature Review and Device Physical
Examination

Prior to any testing, the analyst should uncover as many vulnerabilities and potential mitigations
as possible for the ICS device in question. Two approaches can be considered:

• Literature review: Perform a comprehensive literature review to determine known vulnera-
bilities and mitigations

• Device physical examination: Examine the key components of the system if possible, which
may also suggest vulnerabilities or mitigations

Background research and testing feed into each other – knowing about existing vulnerabilities can
lead to uncovering other similar vulnerabilities.

If lab testing is planned, the results of the literature review and device examination should
conclude with a general discussion of the best candidates (both vulnerabilities and mitigations) for
demonstration. The process to scope the vulnerabilities and mitigations to be tested is detailed in
Chapter 6, and is based on combining the APP scores from Chapter 3 with the risk scores presented
in Chapter 4. An example of this scoping/down-selection process is shown in Appendix A.

Vulnerabilities should include common problems (like well-known issues with ICS technology
and architectures) as well as specific risks (for example, a vulnerability to crashing when scanned
from the network, or devices freezing if communication is lost). All available information about
the device and its intended deployment, as well as a range of access avenues and tactics that cyber
adversaries could employ, and the device’s physical environment should be examined. The attack
surface for these devices may include firmware, settings, networking, configuration platforms,
peer devices, and potential physical vectors. Countermeasures range from general cyber fixes (e.g.
external security enhancement like VPN encapsulation) to specific cyber fixes (e.g. configuring
onboard security measures).
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5.1 Literature Review Process

The literature review is intended to gather background information about the device and research
both known and potential vulnerabilities and mitigations. Of course, when gathering all avail-
able information about the ICS device it may be limited by the assessment scope (e.g. classi-
fied/unclassified data, public/government information, etc.).

When gathering background information, consider the following:

• Application space (historical and evolving)

• (optional) Device history

– Production timeline

– Vendor background

• Operational procedures, requirements, and architecture

– Device administration/lifecycle

– Configuration/programming procedures

– Firmware update process

– Vendor specific patching, etc

– Web based applications

– Vendor documentation and manuals

• Chassis communications

• Software architecture

• Cyber security capabilities, including recovery/restoration

• Communication protocol vulnerabilities

• (optional) Other

– Application focus (specifically for this report, e.g. ship systems, manufacturing, etc.)

– Known incidents (the sensitivity will impact the final report’s sensitivity)

There are many cyber-security based websites that provide information about ICS device vul-
nerabilities and mitigations. Conference proceedings also provide a good avenue to research vul-
nerabilities. Following is a partial list of references to use for research into ICS device vulnerabil-
ities and mitigations:
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• SCADAhacker

• BlackHat/DefCon/TakeDown presentations

• Digital Bond website

• ICS-CERT

• Google Scholar

• IEEExplore

• Rapid7

• Manufacturers’ sites and product documentation

• Common vulnerabilities and exposures (CVE) database

• S4 conferences

• Manufacturer’s website

• Other relevant subject matter discussion boards

5.2 Device Physical Examination

If at all possible, the device should be examined physically. The hardware subcomponents that
make up the device might have potential vulnerabilities not found in the initial literature review
and would require their own subsequent literature review specific to the subcomponent. For ex-
ample, a specific make and model of a PLC CPU module, the CPU chip, system-on-a-chip (SoC),
communications processor (CP) module, or Ethernet chipset might have intrinsic vulnerabilities
that could be uncovered with focused research. The following list is a good overview of potential
components to consider when doing a physical examination of the device:

• Device construction

• CPU and/or CPU module - processor type/architecture, identifier, model

• Memory – SDRAM, DRAM, etc.

• Communications processors

• Chassis communications

• Debug ports

• Connection ports such as Ethernet ports, serial connectors, etc. (pins, pads, or connectors)

• Memory or storage cards like PCMCIA or MultiMediaCard MMC
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The physical examination should first start with an assay of the major device components with
potential cybersecurity components. Examples of major components can include the CPU and
CP network card. It is also worth examining any medium that the PLC components use to com-
municate with each other and with other devices. Different communication mediums can include
general-purpose network interfaces like Ethernet, Token Ring, RS-485, or specialized PLC inter-
connects, as well as the corresponding protocols (such as Modbus and Profibus). It is also worth
gaining at least a cursory understanding of what the backplane bus is (VME, K-Bus/P-bus, etc.).

After performing a holistic assessment of the PLC hardware system, each component should
then be examined. The rest of this section discusses the procedure for examining and characterizing
the security of each of the major components. The first step is to examine the exterior of the device
for any sort of debug or console ports. These ports may take on the form of exposed pins, pads,
or even full-fledged connectors like DB9 ports for RS-232 connectors. Other possible connections
include slots for inserting memory or storage cards like PCMCIA or MMC. The next step after
examining the exterior of each module is to remove the outer housing with the goal of examining
the printed circuit boards (PCBs) that make up the module. Any other possible debug ports or
memory card slots should be noted here.

Upon gaining a full view of the board, it is now time to characterize the embedded hardware
with the goal of determining the “what” and “how” of the hardware. Major components should be
identified, including:

• CPU/SoC: Determine what the CPUs for the module are.

• Volatile memory: Determine whether it is static random-access memory (SRAM) or DRAM,
and the amount of memory that are attached to the CPUs.

• Non-volatile memory: Determine whether there is any sort of non-volatile memory. This
memory may be EEPROM, NOR Flash, or NAND flash. It is also important to note whether
this storage is socketed, which can make it easier for an attacker to modify the module’s
firmware.

• Transceiver chips: Determine what sort of off-board communications components are on
the PCB. Examples include Ethernet physical transceivers (PHYs), serializer/deserializers
(SERDESs), level shifters, and bus interfaces.

Successfully identifying these components is essential to determine whether any access opportuni-
ties may exist (including debug interfaces, communications, memory sockets, bus interfaces, etc.).
Examining the area around the CPU/SoC area for exposed pins or pads can also help find hardware
access avenues.
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5.3 Collating the Results

The vulnerabilities and potential mitigations discovered in the literature review and device physical
examination need to be summarized into tables, and should be given unique labels to track them
throughout the process. The example shown in Appendix A labels vulnerabilities as VA, VB, ... and
mitigations are labeled MA, MB, .... For each vulnerability tested, the following information should
be captured when feasible:

• Brief vulnerability description and unique identifier

• References – public or private/government material

• Dates of discovery and last analysis (approximate if necessary)

• Vulnerability risk score and ranking

• Access/procedure pair and goals supported

• Testing approaches used

• Safety/damage impact given the application (if known)

– Unexpected or unpredictable physical system behavior

– Damage to physical system components

– Potential for DOS of local automated or manual control

– Potential for DOS of supervisory control

• Additional notes and analysis, if any

• Applicable mitigations, if any, and the results of testing if available

These are later down-selected for testing using using the risk score and APP prioritization
(Chapter 3). Testing is described in the next chapter.
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Chapter 6

Testing the ICS Device

Testing the ICS device in a lab setting serves several purposes. Cyber security testing on opera-
tional devices might have adverse effects – especially for an ICS field device. Something as simple
as scanning a port to look for vulnerabilities can cause a field device or ICS process to fail – and if
the device is use and operational, this failure could have serious consequences. Mitigations need to
be tested as well, as they can counterproductively lead to serious operational impacts (like a miti-
gation that could fail and block critical communications). Performing laboratory assessments tests
the effects of vulnerability and mitigations testing, which allows the tester to develop requirements
for operational tests that minimize the potential impacts to reliability on operational equipment.

The testing process is iterative in nature. As the device is tested, new vulnerabilities might be
exposed, and new mitigations discovered that are more specific to the device itself. There are three
aspects involved in testing – all or some of them may be incorporated depending on the experience
of the testers, available resources, and desired outcomes. The two phases of lab assessment are:

• Verification/characterization testing:
V/C testing determines the effects of the vulnerabilities and mitigations selected for test-
ing on the system or device. V/C testing may also reveal other, equipment specific issues
(not found in the literature review or device physical examination), which can be analyzed
further via exploration testing. V/C testing also determines whether mitigations achieve a
needed result, and can be implemented safely and reliably on an operational ICS. V/C test-
ing relies on the approaches and testing tactics associated with each of the prioritized APPs
(Chapter 3). The tactics are used initially to verify vulnerabilities that fall under each APP
– clearly this is the “verification” aspect of the V/C testing. In addition to using the tactics
and approaches listed to verify vulnerabilities, others might also be discovered in the testing
process – resulting in the “characterization” of the device being tested.

• Exploration testing:
Based on the results of V/C testing, further exploration of newly discovered potential device
or application-specific vulnerabilities (V3/V4 from Chapter 2) might be required. Explo-
ration testing focuses on key cyber/physical interactions, mission operations, and ensuring
safe OT&E implementation.
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6.1 Test Scoping: Deciding What to Test

The literature review and device research, and also the V/C testing itself, identify vulnerabilities
and potential mitigations. However, resources and time do not allow for testing everything, and
some vulnerabilities simply may not need to be tested in order to ensure a device is secure (i.e they
score very low on the risk score calculation or are associated with a low priority APP). The goal is
to focus efforts on testing the vulnerabilities and mitigations that will provide the greatest degree
of security.

The FDAM approach includes guidance to determine the best set of tests to run. Prior to
V/C testing, the APPs (Chapter 3) and the risk calculation (Chapter 4) are used to narrow down
the vulnerabilities and mitigations found in the literature review and device physical examination
(this sensibly limits the “verification” phase of the V/C testing). A similar, but slightly modified
approach is used to narrow down vulnerabilities and mitigations that are discovered during the V/C
testing and further analyzed in exploration testing.

A brief overview of the process is presented here, and example of how to use the process is
presented in Appendix A:

• Identify and tabulate vulnerabilities and mitigations

• Calculate risk scores and rank all vulnerabilities

• Tabulate vulnerabilities, their risk scores/ranks, and mitigations into APPs bands

• Down-select the vulnerabilities to be tested (rules are shown in Table 6.1)

• Down-select mitigations associated with the vulnerabilities based on achievability and effec-
tiveness

• Finalize list of vulnerabilities and mitigations to be tested

The analyst tabulates the vulnerabilities, and uses the selection rules from Table 6.1 to form the
subset of vulnerabilities to be tested. Also, each vulnerability has associated mitigations, and these
may also be tested (provided testing would are achievable, e.g. some mitigation steps are only
applicable at the design phase, like conformal coatings for circuit boards). Mitigations selected for
testing should include ones with the best likelihood of being effective (i.e. low operational impact,
address more than one vulnerability, simple to configure, address high-risk issues, etc.). After the
final list of vulnerabilities and mitigations is determined, then testing is performed.
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Ordered Vulnerability
APPs Test Rule

A2-P4 (G1, G4)

Test All
A2-P1 (G1–G5)
A1-P4 (G1, G5)
A1-P1 (G1–G5)

A5-P1 (G1–G5) Test Critical,
High,

Medium
A4-P4 (G1, G4)
A4-P1 (G1–G5)

A2-P2 (G3) Test Critical
& HighA2-P3 (G2)

Table 6.1: The APPs described in Chapter 3 are presented in order of importance, and banded into
to high, medium, and low importance, with the risk scores to be tested within each band

6.2 Verification/Characterization Testing

Once the vulnerabilities and mitigations to be analyzed have been determined (for “verification”
testing, based on the process above and shown in Appendix A), then the testing can begin. The goal
of V/C testing is to demonstrate the discovered vulnerabilities and evaluate potential mitigations to
determine if they are effective (and can be implemented both securely and safely). In the process of
using the testing approaches suggested by the APP prioritization, other vulnerabilities specific to
the equipment being tested might be discovered (the “characterization” part of V/C). It is assumed
no new general or system level vulnerabilities will be discovered (vulnerability categories V1 and
V2 from the assessment framework), as these should have been uncovered in the literature review
and device physical examination. The newly identified vulnerabilities will then be examined in
subsequent exploration testing (if desired and feasible).

Following are examples of testing approaches used to verify the vulnerabilities discovered in the
literature review and device physical examination, and also characterize additional vulnerabilities
associated with each of the APPs (these were previously mentioned in Chapter 3):
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1. Network access and atypical stimuli (A2/P4) to change behavior (G1) or deny operation (G4)

• Network scanning
• Single- or few-packet attacks
• Replay attacks
• Memory access via ICS protocols

2. Network access and device management (A2/P1) to achieve any goal (G1-5)

• Via vendor software or remote access (e.g. FTP, SSH, etc.)
• Target any device containing code, particularly CPU and communication modules
• Attempt to read firmware
• Blank or alter firmware
• Change operating logic
• “Brick” the device

3. Physical access and atypical stimuli (A1/P4) to change behavior (G1) or deny operation (G4)

• Power cycling
• Remove/exchange/add modules or submodules while powered on
• Remove memory cards/chips while powered on
• Access JTAG-like functions
• Evaluate effects from device electrical supply (like abnormal power quality)
• Evaluate effects from RF/EM

4. Physical access and device management (A1/P1) to achieve any goal (G1-5)

• Move jumpers or change switch positions
• Exchange memory cards/chips
• Inserting USB/peripherals
• Local configuration or access ports that are distinct from the primary network port

5. Engineering workstation access and device management (A5/P1) to achieve any goal (G1-5)

• Target is a presumed authorized mobile computing platform for ICS management
• Similar opportunities to A2/P1, but may assume that the device configuration will be

known locally
• Can allow access if A2 or A1 are unavailable
• OS services may enable some new attacks against vulnerabilities

6. Peer device access and atypical stimuli (A4/P4) to change behavior (G1) or deny operation
(G4)

• Vulnerabilities may be similar to A2/P4 if the connections are TCP/IP
• If serial, then similar questions apply, but likely using different approaches
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7. Peer device access and device management (A4/P1) to achieve any goal (G1-5)

• Only relevant if peer or subchassis communications ports allow for P1

• Vulnerabilities may be similar to A2/P1

8. Network access and privileged operational relationship (A2/P2) to obtain data (G3)

• Given the normal lack of security services for ICS protocols, this should be achievable

• Vulnerabilities are well-known, so issues should be noted with minimal resources ex-
pended

9. Network access and device impersonation (A2/P3) to misrepresent state (G2)

• Similarly to A2/P2, this should be achievable

• Vulnerabilities are well-known, so issues should be noted with minimal resources ex-
pended

There are other important requirements to guide the testing, especially the development of a
suitable test environment. The ICS device being tested should be set up using a configuration
suitable for the application (subject to available information). Key details include:

• A varied set of components (including power supply, CPU, binary I/O, analog I/O, net-
work/communications interfaces, and cyber security modules if applicable)

• Remote I/O and/or sub-chassis as reasonable and feasible (a common feature for ICS field
devices)

• If needed, a minimal set of analog connections such as simple signal generators and me-
ters (to show proper I/O and state-of-health for onboard logic; note that testers have often
configured front panel LEDs to show functioning internal logic)

• Representative network connections for supervisory control (where applicable), including
monitoring and control traffic

• Common access methods for device configuration (physical/local and network)

• Two copies of the vendor’s management software (one with the device configuration stored
to test the A3 access path, and a second to exercise other P1 vulnerabilities)

61



All testing should include responsible approaches and documentation, including:

• Hypotheses

• Test requirements

• Success/fail indicators

• Test plan and execution

These elements should support the testing, but not dominate the effort. The FDAM is exploratory,
and not intended to be a checklist.

Important cyber security tools that can be used during V/C (and later) testing include:

• Vendor software

• Open-source ICS protocol implementations

• IDA Pro (disassembler/debugger)

• Wireshark (network analysis)

• NMap (network mapping)

• Nessus (vulnerability scanning)

• Metasploit, Immunity Canvas, Kali Linux (penetration testing)

• Samurai STFU (electric utility ICS based penetration testing)

• Cobalt Strike (threat emulation)

• Scapy (packet manipulation)

• tcpdump/tcpreplay (packet analyzer)

• binwalk (firmware analysis)

For each vulnerability tested, the following information should be captured when feasible (the
same information suggested in Section 5.3):

• Brief vulnerability description and unique identifier

• References – public or private/government material

• Dates of discovery and last analysis (approximate if necessary)

• Vulnerability risk score and ranking

62



• Access/procedure pair and goals supported

• Testing approaches used

• Safety/damage impact given the application (if known)

– Unexpected or unpredictable physical system behavior

– Damage to physical system components

– Potential for DOS of local automated or manual control

– Potential for DOS of supervisory control

• Additional notes and analysis, if any

• Applicable mitigations, if any, and the results of testing if available

The results of the testing will be compiled and documented according to the final test report format
(detailed in the next chapter).

6.3 Exploration Testing

Exploration testing proceeds similarly to V/C testing. But because the vulnerabilities being ex-
plored are a result of the V/C testing, they should all be equipment- or application-specific vulner-
abilities (V3/V4). Therefore, in the exploration testing phase, the V3/V4 categories are incorpo-
rated. The exploratory testing proceeds from the new vulnerability/mitigation summary tables in a
way identical to the down-selection for the V/C testing. The steps are listed in detail below (and
also in Appendix A):

• Identify and tabulate vulnerabilities and mitigations discovered through V/C testing

• Calculate risk scores and rank all vulnerabilities (check that all are V3 or V4)

• Tabulate vulnerabilities, their risk scores/ranks, and mitigations into APPs bands

• Down-select the vulnerabilities to be tested (same rules as V/C testing)

• Down-select mitigations associated with the vulnerabilities based on achievability and effec-
tiveness

• Finalize the list of vulnerabilities (all should be V3 or V4) and mitigations to be tested

The exploratory testing phase has many of the same requirements and suggestions as the V/C
testing process. There is a need for a properly-configured test environment, suitable test plans,
and similar software/hardware testing capabilities. The results from the exploratory testing will be
captured using the same formats shown in the prior section. When exploration testing is completed,
then the final step is to assemble the test report, which is detailed in the next chapter.
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Chapter 7

Conclusion: Writing a Device Test Report

This final chapter of the FDAM describes the major sections of the device final report based on
executing the FDAM approach. The FDAM accumulates a significant body of knowledge via
the literature review, physical examination, risk scoring/ranking, test scoping, and test results are
complete (which phases are included can be modified by the analyst based on personal experience
and project resources).

The report is narrative in nature; the outline below is a suggestion as to how to present and
compile that information to convey the thoroughness of the approach and ensure that reliable con-
clusions and recommendations have been reached. The narrative also captures testing details to
allow for replication and reinvestigation. The report should emphasize the identification of vulner-
abilities, reducing the cyber security risk, and finally managing operational test safety – by clearly
delineating significant issues that could lead to damage or safety risks during operational testing.

Key report sections include:

• Introduction

– FDAM overview

– Background for the field device being analyzed

• Literature review and device physical examination

– Literature review sources and results

– Device physical examination (key observations, etc.)

– Summary descriptions for vulnerabilities and mitigations discovered (per the suggested
format toward the end of Section )

• Verification/characterization testing

– Scoping; the down-selection process to identify vulnerabilities and mitigations to be
tested (see Appendix A)

– Testing setup and background

– Testing results (also using the summary format then applicable; V/C realists may be
selected for further exploratory testing)
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• Exploration testing

– Scoping; down-select the vulnerabilities and mitigations to be tested based on V/C
testing (see Appendix A)

– Testing setup and background (may be similar to V/C tests, e.g. the device configura-
tion and lab equipment)

– Testing results, scored and summarized

• Summary

– Conclusions

* Summarize all vulnerabilities, risk scores, and if they were tested

* Summarize all mitigations, what vulnerabilities they address, if they were tested,
and whether they can be added to operational systems

* Summarize the concerns for operational testing, and applicable controls to manage
damage/safety risks

– Recommendations

* Vulnerabilities in most need of being addressed, and necessary follow-on analysis

* How mitigations should be implemented to reduce risk without unreasonable im-
pacts to operation

* Other tests that may be needed to fully characterize operational test safety

Each of the major sections is addressed individually in the subsequent sections.

7.1 Introduction

A brief overview of the FDAM process should be included in the final report. Also, a suggested
outline for reporting the device background information includes:

• Background - what is being tested and why

• (optional) History of the device under test

– Application space (historical and evolving)

– Production timeline

– Vendor background

• Basic overview of the device construction

– Hardware modules

– Chassis communications

– Software architecture
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• Administration/lifecycle procedures

– Configuration/programming process

– Firmware update process

– Cyber security capabilities, including recovery/restoration

• (optional) Application focus (specifically for this report, e.g. ship systems, manufacturing,
etc.)

• (optional) Known incidents (the specificity will impact the final report’s sensitivity)

7.2 Literature Review and Device Physical Examination

This section is composed as a narrative of the activities that were pursued and the vulnerabili-
ties and mitigations that were discovered as part of the literature review and device examination
(Chapter 5). It should include the tools, sources, and methods that were employed as part of the
process.

7.2.1 Literature Review

The literature review (Section 5.1) is aimed at finding all the vulnerabilities and mitigations avail-
able from relevant cyber security-based websites, conference proceedings, manufacturers websites,
and other relevant subject matter discussion boards. This section of the report should briefly sum-
marize all the vulnerabilities and mitigations found.

7.2.2 Device Physical Examination

If the device is able to be examined physically, this section will consist of a narrative detailing the
approach used, and should include a detailed description of the major components (Section 5.2).
These components include the CPU, CP/network cards, debug and console ports, other connection
ports such as slots for memory or storage cards,volatile and non-volatile memory, printed circuit
boards, etc. Vulnerabilities based on the devices physical components should be captured.

7.2.3 Vulnerabilities and Mitigations Discovered

The literature review and device physical examination leverages any available information (pos-
sibly limited by the assessment scope, e.g. classified/unclassified data, public/government infor-
mation, etc.) to develop an overview of cyber vulnerabilities and possible mitigations. Once the
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device background has been detailed, and a thorough physical examination has been performed
(if possible), a table listing all vulnerabilities and mitigations discovered should be created per the
suggested format toward the end of Section .

Of particular importance are the application context (if known) and known incidents for the
specific device and application space. Vulnerabilities should include common problems (like well-
known issues with ICS technology and architectures) as well as specific risks (for example, a
vulnerability to crashing when scanned from the network, or devices freezing if communication
is lost). Countermeasures range from general cyber fixes (e.g. external security enhancement like
VPN encapsulation) to specific cyber fixes (e.g. configuring onboard security measures).

7.3 Verification/Characterization Testing

The focus in this section should be on the approach used to decide which vulnerabilities and miti-
gations should be further investigated through testing, the test approaches that were used, and how
to leverage existing ICS testing capabilities whenever possible. The process used to scope the vul-
nerabilities and mitigations selected to be tested, and the testing setup and testing process should be
described. Key to this report section is how the prioritized APPs guide the testing process. Recall
from Chapter 3 that each APP listed a set of potential approaches to test vulnerabilities discovered
during the literature review and device physical examination (“verification”), but also to possibly
uncover other vulnerabilities (“characterization,” which will be further investigated in exploration
testing). All approaches used should be noted, as well as any additional vulnerabilities that were
uncovered.

7.3.1 Verification/Characterization Test Scoping

The test scoping process is described in Section 6.1, and there is an example in Appendix A. The
information captured per the example should be reported here. The down-selected verification test
scope will necessarily be augmented by characterization testing.

7.3.2 Verification/Characterization Test Setup and Background

This section describes how the testing was set up and the tools used to perform the testing (Section
7.2.3). The report should cover things that were considered and ultimately incorporated during the
V/C testing such how the testing components (power supply, network/communication interfaces,
etc.) were set up, access methods that could be used for device configuration, vendor software used
for device access and management, etc.
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The test requirements, success/fail indicators, and an overview of the test plan should be de-
scribed. This section should also discuss the cyber security tools used during the testing, such
as vendor software, penetration testing, firmware analysis, network analysis, packet manipulation,
etc.

Recall from Section 7.2.3 and Chapter 3 that the FDAM has numerous suggestions for testing
approaches within each of the APPs that cover both verification and characterization. The final
device report should note which of these approaches were used.

7.3.3 Verification/Characterization Testing Results

For each vulnerability or mitigation tested, the following information should be captured (refer-
encing Section 5.3):

• Vulnerability description

• References (public or private/government material)

• Dates of discovery and last analysis (approximate if necessary)

• APP association, and goals supported

• Vulnerability risk score and ranking

• Testing approaches used

• Safety/damage impact given the application (if known)

– Potential unexpected or unpredictable behavior during OT&E

– Potential damage to underlying physical system components

– Denial of service for local automated or manual control

– Denial of service to supervisory control

• Additional notes and analysis, if any

• Additional vulnerabilities discovered (to be tested later during Exploration testing)
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7.4 Exploration Testing

The focus of exploration testing is to further develop vulnerabilities/mitigations discovered as a
result of completing V/C testing. Test procedures are similar to V/C testing. The only difference
is that fewer vulnerability category types (only V3 and V4, described in Chapter 2) are covered
because the goal of exploration testing is to test specific vulnerabilities. The vulnerabilities are
scored and listed from lowest to highest score, along with their risk score ranking and vulnerability
category.

The test scoping process is similar to the one used for V/C tests, and again the example in
Appendix A is useful. Note that an exploration testing background and set up section may not be
required, as it is expected to be similar to the V/C configuration (Section 6.3). The results will also
be tabulated in the summary format, with the only exception being that all results should cover
only vulnerabilities specific to the device or application (V3/V4).

7.5 Device Report Summary

The summary of the FDAM work for the specific device is critical to communicating the results.
The first section covers the conclusions. A good approach would be to cover vulnerabilities, mit-
igations, and operational test safety concerns separately. One table will summarize the vulnera-
bilities, including the unique identifier (like the example ones in Section 5.3 or Appendix Aex),
risk score and ranking, and whether they were tested. A second table includes mitigations, which
vulnerabilities they would improve, if they were tested, and if they can be retrofitted to existing
systems and designs (as some mitigations may need to be included at the design stage). Finally,
the conclusions should include cover all of the potential OT&E test concerns, especially controls
to avoid damage/safety risks, possibly as specific ROE.

Following the conclusions are the recommendations. Very likely, there will be broad caveats for
deploying the tested field device and suggestions or requirements for further analysis. This section
should also note the depth of analysis achieved for the current effort, and how additional work
could logically build on the existing knowledge. If feasible, the discussion should leverage the
vulnerability work to determine priority for risk mitigation. Also, the mitigations can be considered
in terms of cost/benefit, and which are most likely to avoid unreasonable impacts to operations.
Finally, the recommendations should also discuss what are other tests may be needed to fully
characterize operational test safety.
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Appendix A

FDAM Test Scoping Example

A.1 Verification/Characterization Testing Selection Process

The literature review and physical examination will result in a list of vulnerabilities and mitiga-
tions. The following example shows how the FDAM approach can be used to narrow down what
should be tested in both verification and exploration testing.

For this example, assume the following:

• The literature review and physical examination uncovered 13 vulnerabilities and 8 mitiga-
tions

• Vulnerabilities are labeled VA through VM

• Mitigations are labeled MA through MH

All vulnerabilities need to be scored and ranked using the risk score calculations in Chapter 4.
Recall that the risk scores have been prioritized as shown in Table A.1.

Rating Risk Score

None 0.0 - 0.1
Low 0.1 - 3.9

Medium 4.0 - 6.9
High 7.0 - 8.9

Critical 9.0 - 10.0

Table A.1: Qualitative severity rating scale
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To date, there is no mitigation risk score calculation that would be applicable for FDAM. Con-
sequently, mitigations are initially categorized by associating them with the vulnerabilities they
can address. Table A.2 shows the list of vulnerabilities to be considered (VA through VM), their
risk score, the ranking according to Table A.1, and the associated mitigations. Note that some
mitigations might be applicable to one or more vulnerabilities.

Vulner- Associated
ability Risk Rank Mitigations

VA 2.2 Low MA, MB
VB 3.2 Low MC, MF , MH
VC 3.6 Low MG
VD 3.6 Low MB, MF
VE 3.9 Low MA, MB
VF 5.6 Medium MB, ME
VG 6.1 Medium MD
VH 6.9 Medium MB, MH
VI 8.1 High MD
VJ 8.3 High MD
VK 8.7 High MH
VL 9.1 Critical ME , MH
VM 9.2 Critical MA, ME

Table A.2: The vulnerabilities found in the literature review and physical examination are listed
in order of their scores; associated ranks and mitigations are also listed
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The next step in the process is to associate the vulnerabilities with the appropriate access/procedure
pairs (APPs). Recall from Chapter 3 that the APPs are presented in order of priority. In Table A.3,
the prioritized APP list is divided into bands. Within each band is a rule that determines the ranks
of the vulnerabilities to be tested.

Ordered Vulnerability
AC-APPs Test Rule

A2-P4 (G1, G4)

Test All
A2-P1 (G1–G5)
A1-P4 (G1, G5)
A1-P1 (G1–G5)

A5-P1 (G1–G5) Test Critical,
High,

Medium
A4-P4 (G1, G4)
A4-P1 (G1–G5)

A2-P2 (G3) Test Critical
& HighA2-P3 (G2)

Table A.3: Listing APPs according to priority, and then dividing into sections that determine which
vulnerabilities should be tested in each band
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Based on Table A.3, vulnerabilities are associated with the appropriate APP, resulting in a table
similar to Table A.4. Note that throughout this example the APPs listing order always remains
the same – the vulnerabilities and mitigations changed positions. For illustrative purposes, the
associated mitigations column has been moved off to the right side.

Ordered Vulner- Test Vulnerability Associated
AC-APPs ability Risk Rank Vulnerability? Test Rule Mitigations

A2-P4 (G1, G4) VE 3.9 Low Yes

Test All

MA, MB
A2-P1 (G1–G5) VF 5.6 Medium Yes MB, ME
A2-P1 (G1–G5) VL 9.1 Critical Yes ME , MH
A1-P4 (G1, G5) VJ 8.3 High Yes MD
A1-P4 (G1, G5) VM 9.2 Critical Yes MA, ME
A1-P1 (G1–G5) VD 3.6 Low Yes MB, MF

A5-P1 (G1–G5) VH 6.9 Medium Yes
Test Critical,

High,
Medium

MB, MH
A4-P4 (G1, G4) VC 3.6 Low No MG
A4-P4 (G1, G4) VI 8.1 High Yes MD
A4-P1 (G1–G5) VK 8.7 High Yes MH
A4-P1 (G1–G5) VB 3.2 Low No MC, MF , MH

A2-P2 (G3) VG 6.1 Medium No Test Critical
& High

MD
A2-P3 (G2) VA 2.2 Low No MA, MB

Table A.4: The vulnerabilities (Table A.2) are associated with the appropriate APPs and test cri-
teria (Table A.3) to determine testing requirements; in this example, VA, VB, VC, and VG will not be
tested
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Based on Table A.4, the final cut of vulnerabilities to be tested is shown in Table A.5. Note
that mitigations are not narrowed down at this point, but will be addressed in the next step.

Ordered Vulner- Test Associated
AC-APPs ability Risk Rank Vulnerability? Mitigations

A2-P4 (G1, G4) VE 3.9 Low Yes MA, MB
A2-P1 (G1–G5) VF 5.6 Medium Yes MB, ME
A2-P1 (G1–G5) VL 9.1 Critical Yes ME , MH
A1-P4 (G1, G5) VJ 8.3 High Yes MD
A1-P4 (G1, G5) VM 9.2 Critical Yes MA, ME
A1-P1 (G1–G5) VD 3.6 Low Yes MB, MF

A5-P1 (G1–G5) VH 6.9 Medium Yes MB, MH
A4-P4 (G1, G4) VI 8.1 High Yes MD
A4-P1 (G1–G5) VK 8.7 High Yes MH

Table A.5: The final vulnerabilities test set is determined; mitigations have not been down selected
yet

The following step is to narrow down the mitigations to be tested. Clearly, only mitigations
associated with vulnerabilities that are to be tested are considered. Although mitigations follow the
vulnerabilities throughout the scoping process, in the final analysis, each one needs to be looked at
carefully to determine if it is achievable, effective, and worthwhile.

• Achievable: Assess if the mitigation is too expensive (e.g. having guards stationed at far
more locations), or if it something that ca actually be done at this stage (i.e. conformal
coating is a design-stage issue, not suitable for retrofitting). As another example, replac-
ing legacy equipment with new simply to get a security advantage might not be financially
reasonable. However, testing a patch and then applying it is probably achievable.

• Effective: Assess if the mitigation could cause more problems than it solves. As an exam-
ple, programmable logic controllers (PLCs) could all be completely isolated from other net-
works, but that could affect important data or mission needs. However, it might be perfectly
acceptable to prevent web access to the PLCs and not impact their effectiveness. Consider
if the mitigation would only protect against a very small or unlikely vulnerability. Should
resources be used elsewhere to implement mitigations that can resolve several more pressing
vulnerabilities?
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In this example, assume that after careful consideration only thee mitigations have been se-
lected for testing – MD, ME , and MH . Adding that information to Table A.5 gives the list of final
vulnerability/mitigation test requirements as shown in Table A.6.

Ordered Vulner- Mitigations
AC-APPs ability to Test

A2-P4 (G1, G4) VE none
A2-P1 (G1–G5) VF ME
A2-P1 (G1–G5) VL ME , MH
A1-P4 (G1, G5) VJ MD
A1-P4 (G1, G5) VM ME
A1-P1 (G1–G5) VD none

A5-P1 (G1–G5) VH MH
A4-P4 (G1, G4) VI MD
A4-P1 (G1–G5) VK none

Table A.6: The final vulnerabilities and mitigations to be tested in the V/C phase

This information informs potential test approaches to test the requirements set shown in Table
A.6 (the “Verification” part) as well as opportunities to discover new vulnerabilities (the “charac-
terization” part). The latter will be down-scoped for exploration testing.

A.2 Exploration Phase Testing Selections

During V/C testing, new vulnerabilities and mitigations may be discovered that need to be tested.
Recall from Chapter 2 that vulnerabilities fall into four categories:

• V1: Common problems/networking and communications

• V2: Common problems/architecture and management

• V3: Equipment-specific problems

• V4: Context- or application-specific problems

All of the vulnerabilities uncovered in the V/C testing should fall into the V3 and V4 categories.
There should not be any new V1 or V2 found because these are general and should have been
uncovered during the literature review or physical examination. The goal of exploration testing is
to test equipment specific vulnerabilities (V3 and V4).
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Using the same example above, assume that eight new vulnerabilities were uncovered during
the V/C testing. They are labeled VN through VU . Just as in the V/C testing, the risk scores for
each needs to be calculated and the vulnerabilities are listed from lowest to highest score, along
with their risk score ranking. The only additional step is to also list each vulnerability’s category
(V1-V4), as shown in Table A.7. As mentioned, they should all fall under the V3 and V4 categories
– listing the category is simply a precautionary measure to ensure that this is the case.

Vulner- V3 Associated
ability Risk Rank or V4 Mitigations

VN 2.3 Low V3 MB, MI
VO 3.2 Low V3 MF , MJ
VP 3.6 Low V4 MM
VQ 6.6 Medium V3 MB, MJ
VR 6.9 Medium V3 MA, MI
VS 8.3 High V4 MB, MM
VT 8.4 High V4 ME
VU 9.3 Critical V3 MK, ML

Table A.7: Vulnerabilities and mitigations discovered in V/C testing are listed, along with associ-
ated vulnerability categories

Subsequent steps proceed similar to prior down-selections. Mixing the vulnerabilities and
associated mitigations in Table A.7 into the APPs (Table A.3) results in Table A.8.

Ordered Vulner- V3 Test Vulnerability Associated
AC-APPs ability Risk Rank or V4 Vulnerability? Test Rule Mitigations

A2-P4 (G1, G4) VT 8.4 High V4 Yes

Test All

ME
A2-P1 (G1–G5) VU 9.3 Critical V3 Yes MK, ML
A1-P4 (G1, G5) VN 2.3 Low V3 Yes MB, MI
A1-P1 (G1–G5) VQ 6.6 Medium V3 Yes MB, MJ

A5-P1 (G1–G5) none N/A N/A N/A N/A Test Critical,
High,

Medium

none
A4-P4 (G1, G4) VP 3.6 Low V4 No MM
A4-P1 (G1–G5) VO 3.2 Low V3 No MF , MJ

A2-P2 (G3) VS 8.3 High V4 No Test Critical
& High

MB, MM
A2-P3 (G2) VR 6.9 Medium V3 No MA, MI

Table A.8: Vulnerabilities and mitigations found during V/C testing will be scoped down and
tested in exploration testing
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According to the prior table, it is clear to see that the first four vulnerabilities will be tested,
along with the second-to-last entry. In this example, assume also that all the associated mitigations
are achievable and effective, and will also be tested. Thus, the final set of vulnerabilities and
mitigations to be tested are listed in Table A.9.

Ordered Vulner- Mitigations
AC-APPs ability to Test

A2-P4 (G1, G4) VT ME
A2-P1 (G1–G5) VU MK, ML
A1-P4 (G1, G5) VN MB, MI
A1-P1 (G1–G5) VQ MB, MJ

A2-P2 (G3) VS MB, MM

Table A.9: The final vulnerabilities and mitigations to be tested in the exploratory phase
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Revision History

Version Date Time Name Notes
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0.5 20151019 1529 JES Split into two volumes and reorganized
0.6 20151119 1004 JES Integrated Q1 comments
0.7 20160111 0814 JES Reorganized material in Volume I
0.8 20160126 1527 JES Joined volumes (Vol. II is a “cheat sheet” appendix)
0.9 20160217 1655 JES Completed “first feedback” circulation draft

0.9.1 20160322 1338 JES Completed “team review” circulation draft
0.9.2 20160602 1612 JES Integrated “team review” comments
0.9.3 20160627 1603 JES Completed assessment process section
0.9.8 20160921 1409 JAS Completed major revision
0.9.9 20160929 1200 JES Finalized 2nd draft
1.0 20170309 1602 JES Finalized first version
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